
EVA
Extreme Value Analysis

Technical Reference and Documentation
MIKE BY DHI 2008



2 EVA



Please Note

Copyright
This document refers to proprietary computer software which is protected
by copyright. All rights are reserved. Copying or other reproduction of
this manual or the related programs is prohibited without prior written
consent of DHI. For details please refer to your 'DHI Software Licence
Agreement'.

Limited Liability
The liability of DHI is limited as specified in Section III of your 'DHI
Software Licence Agreement':
'IN NO EVENT SHALL DHI OR ITS REPRESENTATIVES (AGENTS
AND SUPPLIERS) BE LIABLE FOR ANY DAMAGES WHATSO-
EVER INCLUDING, WITHOUT LIMITATION, SPECIAL, INDIRECT,
INCIDENTAL OR CONSEQUENTIAL DAMAGES OR DAMAGES
FOR LOSS OF BUSINESS PROFITS OR SAVINGS, BUSINESS
INTERRUPTION, LOSS OF BUSINESS INFORMATION OR OTHER
PECUNIARY LOSS ARISING OUT OF THE USE OF OR THE INA-
BILITY TO USE THIS DHI SOFTWARE PRODUCT, EVEN IF DHI
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
THIS LIMITATION SHALL APPLY TO CLAIMS OF PERSONAL
INJURY TO THE EXTENT PERMITTED BY LAW. SOME COUN-
TRIES OR STATES DO NOT ALLOW THE EXCLUSION OR LIMITA-
TION OF LIABILITY FOR CONSEQUENTIAL, SPECIAL, INDIRECT,
INCIDENTAL DAMAGES AND, ACCORDINGLY, SOME PORTIONS
OF THESE LIMITATIONS MAY NOT APPLY TO YOU. BY YOUR
OPENING OF THIS SEALED PACKAGE OR INSTALLING OR
USING THE SOFTWARE, YOU HAVE ACCEPTED THAT THE
ABOVE LIMITATIONS OR THE MAXIMUM LEGALLY APPLICA-
BLE SUBSET OF THESE LIMITATIONS APPLY TO YOUR PUR-
CHASE OF THIS SOFTWARE.'

Printing History
June 2005
April 2006
October 2007
 3



4 EVA



C O N T E N T S
5



1 INTRODUCTION  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  9

2 EXTREME VALUE MODELS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   11
2.1 Basic probabilistic concepts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   11
2.2 Annual maximum series  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   12
2.3 Partial duration series   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   13

3 INDEPENDENCE AND HOMOGENEITY TESTS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   15
3.1 Run test   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   15
3.2 Mann-Kendall test .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   16
3.3 Mann-Whitney test   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   17

4 PROBABILITY DISTRIBUTIONS .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   19
4.1 Probability distribution for AMS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   19
4.2 Probability distributions for PDS   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   19

5 ESTIMATION METHODS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   21
5.1 Method of moments .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   21
5.2 Method of L-moments   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   22
5.3 Maximum likelihood method .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   24

6 GOODNESS-OF-FIT STATISTICS .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   25
6.1 Chi-squared test .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   25
6.2 Kolmogorov-Smirnov test   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   26
6.3 Standardised least squares criterion  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   27
6.4 Probability plot correlation coefficient   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   29
6.5 Log-likelihood measure   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   30

7 UNCERTAINTY CALCULATIONS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   31
7.1 Monte Carlo simulation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   31
7.2 Jackknife resampling  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   33

8 FREQUENCY AND PROBABILITY PLOTS .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   35
8.1 Plot of histogram and probability density function   .  .  .  .  .  .  .  .  .  .  .  .  .   35
8.2 Probability plots  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   35

9 REFERENCES  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   39

Appendix A Probability distributions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   43

A.1 EXPONENTIAL DISTRIBUTION  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   45

A.2 GENERALISED PARETO DISTRIBUTION  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   47

A.3 GUMBEL DISTRIBUTION .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   51
6 EVA



A.4 GENERALISED EXTREME VALUE DISTRIBUTION   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  55

A.5 WEIBULL DISTRIBUTION .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  59

A.6 FRECHÉT DISTRIBUTION   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  65

A.7 GAMMA/PEARSON TYPE 3 DISTRIBUTION   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  69

A.8 LOG-PEARSON TYPE 3 DISTRIBUTION .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  75

A.9 LOG-NORMAL DISTRIBUTION   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  77

A.10 SQUARE ROOT EXPONENTIAL DISTRIBUTION .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  85

A.11 AUXILIARY FUNCTIONS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  87
 7



8 EVA



1 INTRODUCTION
The EVA toolbox in MIKE Zero comprises a comprehensive suite of rou-
tines for performing extreme value analysis. These include

A pre-processing facility for extraction of the extreme value series 
from the record of observations.

Support of two different extreme value models, the annual maximum 
series model and the partial duration series model.

Support of a large number of probability distributions, including expo-
nential, generalised Pareto, Gumbel, generalised extreme value, 
Weibull, Frechét, gamma, Pearson Type 3, Log-Pearson Type 3, log-
normal, and square-root exponential distributions.

Three different estimation methods: method of moments, maximum 
likelihood method, and method of L-moments.

Three validation tests for independence and homogeneity of the 
extreme value series.

Calculation of five different goodness-of-fit statistics.

Support of two different methods for uncertainty analysis, Monte Carlo 
simulation and Jackknife resampling.

Comprehensive graphical tools, including histogram and probability 
plots.

This document provides a technical reference and documentation for the 
different tools available in EVA.
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Basic probabilistic concepts
2 EXTREME VALUE MODELS
For evaluating the risk of extreme events a parametric frequency analysis 
approach is adopted in EVA. This implies that an extreme value model is 
formulated based on fitting a theoretical probability distribution to the 
observed extreme value series. Two different extreme value models are 
provided in EVA, the annual maximum series (AMS) method and the par-
tial duration series (PDS) method, also known as the peak over threshold 
(POT) method.

2.1 Basic probabilistic concepts

The defined extreme value population is described by a stochastic variable 
X. The cumulative distribution function F(x) is the probability that X is 
less than or equal to x

(2.1)

The probability density function f(x) for a continuous random variable is 
defined as the derivative of the cumulative distribution function

(2.2)

The quantile of a distribution is defined as

(2.3)

where p = P{X ≤ x}. The quantile xp is exceeded with probability (1-p), 
and hence is often referred to as the (1-p)-exceedance event. Often the 
return period of the event is specified rather than the exceedance probabil-
ity. If (1-p) denotes the exceedance probability in a year, the return period 
T is defined as

(2.4)

Correspondingly, the T-year event xT calculated from (2.3) is the level, 
which on the average is exceeded once in T years.

}{)( xXPxF ≤=
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xdFxf )()( =
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−
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Extreme value models
2.2 Annual maximum series

In the annual maximum series (AMS) method the maximum value in each 
year of the record are extracted for the extreme value analysis (see 
Figure 2.1). The analysis year should preferably be defined from a period 
of the year where extreme events never or very seldomly occur in order to 
ensure that a season with extreme events is not split in two. Alternatively, 
a specific season may be defined as the analysis year.

For estimation of T-year events, a probability distribution F(x) is fitted to 
the extracted AMS data {xi, i = 1,2,…,n} where n is the number of years 
of record. The T-year event estimate is given by

(2.5)

where  are the estimated distribution parameters.

Figure 2.1 Extraction of AMS and PDS from the recorded time series.
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Partial duration series
2.3 Partial duration series

In the partial duration series (PDS) method all events above a threshold 
are extracted from the time series (see Figure 2.1). The PDS can be 
defined in two different ways. In Type I sampling, all events above a pre-
defined threshold x0 are taken into account {xi > x0, i = 1,2,…,n}, imply-
ing that the number of exceedances n becomes a random variable. In Type 
II sampling, the n largest events are extracted {x(1) ≥  x(2) ≥ … ≥ x(n)}, 
implying that the threshold level becomes a random variable. If n equals 
the number of observation years, the PDS is referred to as the annual 
exceedance series.

In EVA, both the Type I and Type II sampling methods are provided as 
pre-processing tools for extracting the PDS. If Type I sampling (fixed 
threshold level) is chosen, the corresponding number of exceedances is 
calculated. Similarly, if Type II sampling is chosen (fixed number of 
events or, equivalently, fixed average annual number of events), the corre-
sponding threshold level is determined. For definition of the PDS both the 
threshold level and the average annual number of events have to be speci-
fied.

To ensure independent events in the PDS, usually some restrictions have 
to be imposed on the time and level between two successive events. In 
EVA, an interevent time and interevent level criterion can be defined:

1 Interevent time criterion ∆tc: two successive events are independent if 
the time between the two events is larger than ∆tc.

2 Interevent level criterion pc (0 < pc < 1): two successive events are 
independent if the level between the events becomes smaller than pc 
times the lower of the two events.

If both criteria are chosen, two successive events are independent only if 
both (1) and (2) are fulfilled.

If a fixed threshold level is used to define the extreme value series (Type I 
sampling), the PDS model includes two stochastic modelling components, 
respectively, the occurrence of extreme events and the exceedance magni-
tudes. It is assumed that the occurrence of exceedances can be described 
by a Poisson process with constant or one-year periodic intensity, imply-
ing that the number of exceedances n is Poisson distributed with probabil-
ity function

(2.6))exp(
!
)(})({ t

n
tntNP

n

λλ
−==
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Extreme value models
where t is the recording period. The Poisson parameter λ equals the 
expected number of exceedances per year and is estimated from the record 
as

(2.7)

For modelling the exceedance magnitudes a probability distribution F(x−
x0) is fitted to the exceedance series {xi−x0, i = 1,2,…,n}. The T-year event 
estimate is given by

(2.8)

where  are the estimated distribution parameters.

In the case of Type II sampling, the average annual number of events λ is 
fixed. For modelling the extremes a probability distribution F(x) is fitted 
to the extreme value series {xi, i = 1,2,…,n}. The T-year event estimate is 
given by

(2.9)

where  are the estimated distribution parameters.

The T-year event in the PDS can also be related to the return period of the 
corresponding annual maximum series (denoted annual return period TA). 
The relationship between the return period T defined above and TA is 
given by

(2.10)

Note that for return periods larger than about 10 years T and TA are virtu-
ally identical.
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Run test
3 INDEPENDENCE AND HOMOGENEITY TESTS
The basic requirements for the extreme value models outlined above is 
that the stochastic variables Xi are independent and identically distributed. 
For testing independence and homogeneity of the observed extreme value 
series, three different tests are available in EVA

Run test

Mann-Kendall test

Mann-Whitney test

3.1 Run test

The run test is used for general testing of independence and homogeneity 
of a time series. From the time series {xi, i = 1,2,…,n} the sample median 
xmed is calculated and a shifted series {si = xi−xmed, i = 1,2,…,n} is con-
structed. From the shifted series a run is defined as a set of successive ele-
ments having the same sign. The test statistic is given as the number of 
runs of the shifted series, i.e.

(3.1)

The test statistic is asymptotically normally distributed with mean µz and 
variance σz2 given by

(3.2)
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Independence and homogeneity tests
Thus, the standardised test statistic

(3.3)

is evaluated against the quantiles of a standard normal distribution. That 
is, the H0 hypothesis of independent and homogeneous data is rejected at 
significance level α if z* > Φ-1(1−α/2) where Φ-1(1−α/2) is the (1−
α/2)-quantile in the standard normal distribution.

3.2 Mann-Kendall test

The Mann-Kendall test is used for testing monotonic trend of a time series 
{xi, i = 1,2,..,n}. The test statistic reads

(3.4)

where

(3.5)

A positive value of z indicates an upward trend, whereas a negative value 
indicates a downward trend. The test statistic is asymptotically normally 
distributed with zero mean (µz = 0) and variance given by

(3.6)

For evaluating the H0 hypothesis: no trend in the series, the standardised 
test statistic calculated from (3.3) is compared to the quantiles of a stand-
ard normal distribution.
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Mann-Whitney test
3.3 Mann-Whitney test

The Mann-Whitney test is used for testing shift in the mean between two 
sub-samples defined from a time series {xi, i = 1,2,..,n}. For the time 
series ranks Ri are assigned from Ri = 1 for the smallest to Ri = n for the 
largest observation. Time series of ranks for the two-subsamples are then 
defined by {Ri, i = 1,2,..,n1} and {Ri, i = 1,2,..,n2} where n = n1 + n2. The 
test statistic is given as the sum of ranks of the smaller sub-series, i.e.

(3.7)

The test statistic is asymptotically normally distributed with mean and 
variance

(3.8)

For evaluating the H0 hypothesis: same mean value in the two sub-series, 
the standardised test statistic calculated from (3.3) is compared to the 
quantiles of a standard normal distribution.
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Probability distribution for AMS
4 PROBABILITY DISTRIBUTIONS

4.1 Probability distribution for AMS

The probability distributions that can be applied for AMS are shown in 
Table 4.1. The probability density function, the cumulative distribution 
function, and the quantile function for these distributions are given in 
Appendiks A.

For the log-normal distribution both a 2- and a 3-parameter version is 
available. In the 2-parameter version the location parameter is set equal to 
zero.

4.2 Probability distributions for PDS

The probability distributions that can be applied for PDS are shown in 
Table 4.2. The probability density function, the cumulative distribution 
function, and the quantile function for these distributions are given in 
Appendix A.

Table 4.1 Combinations of probability distributions and estimation methods 
(method of moments (MOM), L-moments (LMOM), and maximum 
likelihood (ML)) available for AMS.

Distribution No. of 
parameters

MOM LMOM ML

Gumbel 2 x x x

Generalised extreme value 3 x x x

Weibull 3 x x

Frechét 3 x

Generalised Pareto 3 x x

Gamma/Pearson Type 3 3 x x

Log-Pearson Type 3 3 x x

Log-normal 2 x x x

3 x x

Square root exponential 2 x
 19



Probability distributions
If the PDS is defined using a fixed threshold, the location parameter is set 
equal to the threshold level x0, and the remaining distribution parameters 
are estimated from the exceedance series {xi−x0, i = 1,2,…,n}. On the 
other hand, when the PDS is defined using a fixed average annual number 
of events, the location parameter is estimated from the data {xi, i = 
1,2,…,n} along with the other distribution parameters. The three parame-
ters of the log-Pearson Type 3 distribution and the two parameters of the 
truncated Gumbel distribution are estimated from the data {xi, i = 
1,2,…,n}.

Table 4.2 Combinations of probability distributions and estimation methods 
(method of moments (MOM), L-moments (LMOM), and maximum 
likelihood (ML)) available for PDS.

Distribution Location 
parameter

No. of 
parameters

MOM LMOM ML

Exponential Fixed 1 x x x

Estimated 2 x x

Generalised Pareto Fixed 2 x x x

Estimated 3 x x

Weibull Fixed 2 x x x

Estimated 3 x x

Gamma/Pearson Type 3 Fixed 2 x x x

Estimated 3 x x

Log-normal Fixed 2 x x x

Estimated 3 x x

Log-Pearson Type 3 - 3 x x

Truncated Gumbel - 2 x
20 EVA



Method of moments
5 ESTIMATION METHODS
For estimation of the parameters of the probability distributions three dif-
ferent estimation methods are available

Method of moments

Method of L-moments

Maximum likelihood method

The estimation methods that are available for the different distributions 
are shown in Table 4.1 and Table 4.2.

5.1 Method of moments

The product moments: mean value µ, variance σ2, coefficient of skewness 
γ3, and kurtosis γ4 are defined as

(5.1)

where E{.} is the expectation operator. The standard deviation σ is the 
square root of the variance. Population moments for the distributions 
available in EVA are shown in Appendix A.
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Estimation methods
Based on the set of observations {xi, i = 1,2,…,n}, estimators of the prod-
uct moments can be calculated

(5.2)

(5.3)

(5.4)

(5.5)

The moment estimators of the distribution parameters are then obtained by 
replacing the theoretical product moments for the specified distribution by 
the sample moments. Expressions of the moment estimators for the differ-
ent distributions are given in Appendix A.

5.2 Method of L-moments

L-moments are defined as linear combinations of expected values of order 
statistics [Hosking, 1990]. The first L-moment (λ1) is the mean value 
identical to the first ordinary moment. The second L-moment (λ2) is a 
measure of scale or dispersion analogous to standard deviation, and the 
third (λ3) and fourth (λ4) L-moments are measures of skewness and kurto-
sis, respectively. L-moments can be written as linear combinations of 
probability weighted moments (PWM). The PWM of order r is defined as

(5.6)
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Method of L-moments
The first four L-moments in terms of PWMs read

(5.7)

Analogous to the skewness and kurtosis defined by product moments, the 
L-skewness (τ3) and L-kurtosis (τ4) are defined as

(5.8)

Since the first r L-moments can be expressed in terms of the first r PWMs, 
procedures based on L-moments and PWM are similar. L-moments, how-
ever, are more convenient with respect to summarising a probability distri-
bution. Population L-moments for the distributions available in EVA are 
shown in Appendix A.

For estimation of L-moments, unbiased PWM estimators are employed 
[Landwehr et al., 1979]

(5.9)

where x(n) ≤ x(n-1) ≤ ... ≤ x(1) is the ordered sample of observations. Unbi-
ased L-moment estimators are obtained by replacing the PWMs in (5.7) by 
their sample estimates in (5.9). L-moment estimates of the distribution 
parameters are then obtained by replacing the theoretical L-moments for 
the specified distribution by the L-moment estimators. Expressions of the 
L-moment estimators for the different distributions are given in Appendix 
A.
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Estimation methods
5.3 Maximum likelihood method

Maximum likelihood estimators are obtained by maximising the likeli-
hood function. In order to simplify the calculations a logarithmic transfor-
mation of the likelihood function is normally performed; i.e. the 
estimators are obtained by maximising

(5.10)

where f(x) is the probability density function.

Maximum likelihood parameter estimators are asymptotically more effi-
cient. However, small sample estimators may be less efficient and in some 
cases the maximum likelihood procedure becomes unstable. Often maxi-
mum likelihood estimators cannot be reduced to simple explicit formula, 
and hence numerical methods such as the Newton Raphson scheme must 
be applied. Expressions for calculation of the maximum likelihood estima-
tors for the different distributions are given in Appendix A.
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Chi-squared test
6 GOODNESS-OF-FIT STATISTICS
For evaluating the fit of different distributions applied to the extreme 
value series, EVA calculates five goodness-of-fit statistics

Chi-squared test statistic

Kolmogorov-Smirnov test statistic

Standardised least squares criterion

Probability plot correlation coefficient

Log-likelihood measure

It must be emphasised that the choice of probability distribution should 
not rely solely on the goodness-of-fit. The fact that many distributions 
have similar form in their central parts but differ significantly in the tails 
emphasises that the goodness-of-fit is not sufficient. The choice of proba-
bility distribution is generally a compromise between contradictory 
requirements. Selection of a distribution with few parameters provides 
robust parameter estimates but the goodness-of-fit may not be satisfactory. 
On the other hand, when selecting a distribution with more parameters, the 
goodness-of-fit will generally improve but at the expense of a large sam-
pling uncertainty of the parameter estimates.

Besides an evaluation of the goodness-of-fit statistics, a graphical compar-
ison of the different distributions with the observed extreme value series 
should be carried out. In this respect the histogram/frequency plot and the 
probability plot are useful. These plots are described in Section 8.

6.1 Chi-squared test

The χ2-test statistic is based on a comparison of the number of observed 
events and the number of expected events (according to the specified 
probability distribution) in class intervals covering the range of the varia-
ble. The test statistic reads

(6.1)

where k is the number of classes, ni is the number of observed events in 
class i, n is the sample size, and pi is the probability corresponding to class 
i, implying that the number of expected events in class i is equal to npi. 
The test is more powerful if the range of the variable is divided into 
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Goodness-of-fit statistics
classes of equal probability, i.e. p = 1/k. The corresponding class limits for 
the considered distributions are obtained from the quantile function cf. 
(2.3). The number of classes is determined such that the expected number 
of events in a class is not smaller than 5.

The test statistic is approximately χ2-distributed with k−1−q degrees of 
freedom where q is the number of estimated parameters. Thus, the H0 
hypothesis that data are distributed according to the specified probability 
distribution is rejected at significance level α if z > χ2(k−1−q)1−α where 
χ2(k−1−q)1−α is the (1−α)-quantile in the χ2-distribution with k−1−q 
degrees of freedom.

6.2 Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test is based on the deviation between the 
empirical and the theoretical distribution function. The test statistic is 
given by

(6.2)

where F(x) is the theoretical cumulative distribution function, and Fn(x) is 
the empirical distribution function defined as

(6.3)

For known distribution parameters, the distribution of the Kolmogorov-
Smirnov statistic is independent of the considered distribution, and gen-
eral tables of critical values of the test statistic can be used for evaluation 
of the significance level. In Table 6.1 critical values are given for the mod-
ified form of the test statistic [Stephens, 1986]

(6.4)

When the distribution parameters are unknown and have to be estimated 
from the data, the distribution of the test statistic depends on the consid-
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Standardised least squares criterion
ered distribution, the estimated parameters, the estimation method, and the 
sample size. In this case no general table of critical values of the test sta-
tistic exists. In EVA, critical values based on Table 6.1 are calculated. 
However, since the parameters of the considered distributions are esti-
mated from the data, the outcome of the test should not be used as a strict 
significance test.

6.3 Standardised least squares criterion

The standardised least squares criterion (SLSC) and the probability plot 
correlation coefficient described in Section 6.4 are both based on the dif-
ference between the ordered observations and the corresponding order sta-
tistics for the considered probability distribution. The SLSC is defined 
using a reduced variate ui (Takasao et al., 1986)

(6.5)

where g(.) is the transformation function, and θ are the distribution param-
eters. Expressions of the reduced variate for the different distributions 
included in EVA are given in Appendix A.

For the ordered observations x(1) ≥ x(2) ≥ ... ≥ x(n), the reduced variates ui 
are calculated from (6.5) using the estimated parameters. The correspond-
ing order statistics are given by

(6.6)

where pi is the probability of the i’th largest observation in a sample of n 
variables. The probability is determined by using a plotting position for-
mula (see Section 8).

Table 6.1 Critical values of the modified Kolmogorov-Smirnov test statistic in 
(6.4) [Stephens, 1986].

Significance 
level

0.25 0.15 0.10 0.05 0.025 0.01 0.005 0.001

Critical value 1.019 1.138 1.224 1.358 1.480 1.628 1.731 1.950
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Goodness-of-fit statistics
The SLSC is calculated as

(6.7)

where u*1-p and u*p are the reduced variates calculated from (6.6) using 
non-exceedance probabilities 1−p and p, respectively. The denominator in 
(6.7) is introduced in order to standardise the measure, so that the SLSC 
can be used to compare goodness-of-fit between different distributions. 
Smaller values of SLSC correspond to better fits. In EVA, p = 0.01 is used 
for calculation of SLSC.

Formulae of the reduced variates and corresponding order statistics for the 
distributions available in EVA are given in Appendix A. For some distri-
butions several formulations of the reduced variate have been proposed. In 
EVA, the SLSC1 formula is used as main output, whereas the other SLSC 
measures are given as supplementary output. It should be noted that for a 
consistent and more direct comparison between different distributions, the 
same reduced variate should be used, if possible. For instance, for compar-
ing the goodness-of-fit between the Gumbel, Frechét, generalised extreme 
value, and square-root exponential distributions the SLSC measure based 
on the Gumbel reduced variate ui = −ln[−ln(pi)] should be applied. For 
comparison of the exponential, generalised Pareto, and Weibull distribu-
tions the exponential reduced variate ui = −ln(1−pi) should be used.

The distribution of the SLSC statistic depends, in general, on the consid-
ered distribution, the estimated parameters, the estimation method, and the 
sample size. Thus, no general table for critical values of the test statistic 
exists.

In certain situations, some data points may fall outside the estimated range 
of the considered distributions (e.g. some observations are smaller (or 
larger) than the estimated location parameter), implying that the reduced 
variate is not defined. In EVA, these points are not included in the calcula-
tion of the SLSC measure. In such cases one should be careful in using the 
SLSC measure for comparing the goodness-of-fit of various distributions.
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Probability plot correlation coefficient
6.4 Probability plot correlation coefficient

The probability plot correlation coefficient (PPCC) [Vogel, 1986] is a 
measure of the correlation between the ordered observations x(1) ≥ x(2) ≥ ... 
≥ x(n), and the corresponding order statistics

(6.8)

where pi is the probability of the i’th largest observation in a sample of n 
variables. The probability is determined by using a plotting position for-
mula (see Section 8). The PPCC is given by

(6.9)

where  and  are the sample mean values of the xi and the Mi, respec-
tively. Values of PPCC closer to unity correspond to better fits.

The distribution of the PPCC statistic depends, in general, on the consid-
ered distribution, the estimated parameters, the estimation method, and the 
sample size, and hence no general table for critical values of the test statis-
tic exists. For the log-normal, Gumbel and Pearson Type 3 distributions, 
the distribution of the test statistic has been evaluated [Vogel, 1986; Vogel 
and McMartin, 1991].

Another formulation of the PPCC measure is based on the reduced variate 
defined above [Takara and Stedinger, 1994]. In this case the PPCC is 
given by

(6.10)

where u(i) and ui* are the ordered reduced variate and the corresponding 
order statistic defined in (6.5)-(6.6). If the reduced variate is a linear trans-
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Goodness-of-fit statistics
formation of the variable X, the two PPCC measures in (6.9) and (6.10) are 
identical.

As for the SLSC measure, in certain situations some data points may fall 
outside the estimated range of the considered distributions, implying that 
the reduced variate used in (6.10) is not defined. In EVA, these points are 
not included in the calculation of the PPCC measure.

6.5 Log-likelihood measure

The log-likelihood measure is given by

(6.11)

where f(.) is the probability density function of the considered distribution, 
and  are the estimated parameters. Larger values of the log-likelihood 
measure correspond to better fits.

As noted above, in some cases data points may fall outside the estimated 
range of the probability distribution. For such points the probability den-
sity function equals zero, implying that (6.11) cannot be evaluated prop-
erly. In EVA, a corrected log-likelihood measure is calculated

(6.12)

where k is the number of data points for which f(x) = 0, and the summation 
is performed for the n−k data points where f(x) > 0.
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Monte Carlo simulation
7 UNCERTAINTY CALCULATIONS
Two different methods are available in EVA for evaluating the uncertainty 
of quantile estimates

Monte Carlo simulation

Jackknife resampling

7.1 Monte Carlo simulation

In Monte Carlo simulation the bias and the standard deviation of the quan-
tile estimate is obtained by randomly generating a large number of sam-
ples that has the same statistical characteristics as the observed sample. 
The algorithm can be summarised as follows:

1 Randomly generate a set of m data points from the considered distribu-
tion using the estimated parameters, i.e.

(7.1)

where ri is a randomly generated number between 0 and 1.

In the case of AMS or PDS with a fixed number of events, m is set 
equal to the sample size m = n. In the case of PDS with a fixed thresh-
old level, the number of events is a random variable that is assumed to 
be Poisson distributed. In this case m is randomly generated from a 
Poisson distribution with parameter  where  is the estimated aver-
age annual number of events for the observed sample, and t is the 
observation period. The average annual number of events for the gen-
erated sample (denoted sample no. j) is estimated as

(7.2)

2 From the generated sample, the parameters of the distribution are esti-
mated. In the case of AMS, the T-year event estimate is then obtained 
from (2.5)

(7.3)
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Uncertainty calculations
where  are the estimated parameters. In the case of PDS with a 
fixed threshold level, the T-year event estimate is obtained from (2.8)

(7.4)

For PDS with a fixed number of events, the T-year event estimate is 
obtained from (2.9)

(7.5)

3 Steps (1)-(2) are repeated k times. The mean and the standard deviation 
sT of the T-year event estimate are then given by

(7.6)

Investigations suggest that the Monte Carlo based estimates of the mean 
and the standard deviation of the T-year event estimator saturate at a sam-
ple size in the order of 10,000. Thus, in EVA the number of generated 
samples is set equal to k = 10,000.

In some cases, samples may be generated from which distribution parame-
ters cannot be estimated, e.g. due to the generation of sample moments for 
which the distribution is not defined or due to the non-existence of an opti-
mum of the likelihood function. Non-convergence of the optimisation 
algorithm is a common problem for the maximum likelihood procedure 
and is especially pronounced for small sample sizes [Madsen et al., 1997]. 
Another problem related to the Monte Carlo method is the generation of 
unreasonable T-year events, resulting in unreliable estimates of the mean 
and the standard deviation of the T-year event estimator. To circumvent 
this problem, samples that result in T-year event estimates larger than the 
event corresponding to a return period of 10,000 times T are excluded.
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Jackknife resampling
7.2 Jackknife resampling

In the jackknife resampling method the bias and the standard deviation of 
the quantile estimate is calculated by sampling n data sets of (n−1) ele-
ments from the original data set. The algorithm can be summarised as fol-
lows:

1 From the original sample data element no. j is excluded. 

2 The distribution parameters  are estimated from the sample {x1, x2, 
.., xj-1, xj+1, .., xn}. In the case of AMS, the T-year event estimate is then 
obtained from (2.5)

(7.7)

In the case of PDS with a fixed threshold level, the T-year event esti-
mate is obtained from (2.8)

(7.8)

Note that with this method it is not possible to include the uncertainty 
in the estimated number of extreme events. For PDS with a fixed 
number of events, the T-year event estimate is obtained from(2.9)

(7.9)

3 Steps (1)-(2) are repeated n times (j = 1,2,…,n). The jackknife estimate 
of the T-year event corrected for bias reads

(7.10)
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Uncertainty calculations
where  is the T-year event estimate obtained from the original sam-
ple. The standard deviation sT of the jackknife T-year event estimate is 
given by

(7.11)
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Plot of histogram and probability density function
8 FREQUENCY AND PROBABILITY PLOTS

8.1 Plot of histogram and probability density function

A histogram is a plot of the empirical probability density function. The 
histogram is constructed by dividing the range of the variable in class 
intervals and counting the number of observations in each class. Denoting 
by ni the number of observations in class i, and ∆x the size of the interval, 
the histogram value of class i is given by

(8.1)

where n is the total number of observations. The appropriate number of 
classes k is determined from the following rule of thumb

(8.2)

where int(.) denotes nearest integer value.

For evaluating the goodness-of-fit of an estimated probability distribution, 
the probability density function is compared to the histogram.

8.2 Probability plots

A probability plot is a plot of the ordered observations {x(1) ≥ x(2) ≥ ... ≥ 
x(n)} versus an approximation of their expected values F-1(pi), where pi is 
the probability of the i’th largest observation in a sample of n variables. 
The probability is determined by using a plotting position formula.

The plotting position formulae available in EVA are shown in Table 8.1. 
These formulae can be written in a general form

(8.3)
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Frequency and probability plots
For plotting, three different probability papers are available: Gumbel, log-
normal, and semi-log papers. In the Gumbel probability paper, the obser-
vations are plotted versus the Gumbel reduced variate

(8.4)

In the log-normal probability paper, the logarithmic transformed observa-
tions are plotted versus the standard normal variate

(8.5)

In the semi-log probability paper, the observations are plotted versus the 
exponential reduced variate

(8.6)

Probability plots are used for evaluating the goodness-of-fit of the esti-
mated probability distributions. In a Gumbel probability paper, the Gum-
bel distribution is a straight line, whereas the 2-parameter log-normal and 
the exponential distributions are straight lines in the log-normal and semi-
log probability papers, respectively. For the other distributions available in 

Table 8.1 Plotting position formulae.

Name Formula a

Weibull 0

Hazen 0.5

Gringorten 0.44

Blom 0.375

Cunnane 0.40
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Probability plots
EVA, no general probability papers exist, since the shape of these distribu-
tions is variable. When plotted in one of the available probability papers, 
distributions with a variable shape are curved lines.

When evaluating the goodness-of-fit in a probability plot, also confidence 
levels of the considered distribution can be shown. The T-year event esti-
mate is asymptotically normally distributed with mean  and standard 
deviation sT which are quantified using Monte Carlo simulation, cf. (7.6) 
or jackknife resampling, cf. (7.10)-(7.11). Approximate (1−α)-confidence 
levels are then given by

(8.7)

For instance, approximate 68% and 95% confidence levels correspond to 
q = 1 and q = 2, respectively.
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Frequency and probability plots
38 EVA



Probability plots
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Probability distributions
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For each of the distributions available in EVA the following is provided in 
this appendix

Probability density function f(x)

Cumulative distribution function F(x)

Quantile function xp corresponding to the non-exceedance probability 
p

Expressions of ordinary moments and L-moments

Description of parameter estimation by the method of moments, the 
method of L-moments and the maximum likelihood method

Reduced variate up for calculation of standardised least squares (SLSC) 
goodness-of-fit criterion

In addition, the appendix includes descriptions of the different auxiliary 
functions used in EVA

Gamma function

Euler’s psi function

Incomplete gamma integral

Cumulative distribution function of the standard normal distribution

Quantile function of the standard normal distribution
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A.1 EXPONENTIAL DISTRIBUTION
Definition

Parameters: ξ (location), α (scale)

Range: α > 0, ξ ≤ x < ∞

(A.1.1)

(A.1.2)

(A.1.3)

Moments

(A.1.4)

(A.1.5)

L-moments

(A.1.6)

(A.1.7)

Moment estimates
If ξ is known, α is estimated from the sample mean value

(A.1.8)
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Exponential distribution
If ξ is unknown, moment estimates are given by

(A.1.9)

L-moment estimates
If ξ is known, the L-moment estimate of α is identical to the moment esti-
mate. If ξ is unknown, L-moment estimates are given by

(A.1.10)

Maximum likelihood estimates
If ξ is known, the maximum likelihood estimate of α is identical to the 
moment and the L-moment estimate.

Reduced variate

(A.1.11)
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A.2 GENERALISED PARETO DISTRIBUTION
Definition

Parameters: ξ (location), α (scale), κ (shape)

Range: α > 0, ξ ≤ x < ∞ for κ < 0, ξ ≤ x ≤ ξ+α/κ for κ > 0

Special case: Exponential distribution for κ = 0

(A.2.1)

(A.2.2)

(A.2.3)

Moments

(A.2.4)

(A.2.5)

(A.2.6)
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Generalised Pareto distribution
L-moments

(A.2.7)

(A.2.8)

(A.2.9)

Moment estimates
If ξ is known, moment estimates of α and κ are given by

(A.2.10)

If ξ is unknown, κ is estimated from the skewness estimator cf. (A.2.6) 
using a Newton-Raphson iteration scheme. Moment estimates of ξ and α 
are subsequently obtained from

(A.2.11)

L-moment estimates
If ξ is known, L-moment estimates of α and κ are given by

(A.2.12)

If ξ is unknown, L-moment estimates are given by

(A.2.13)
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Maximum likelihood estimates
The log-likelihood function reads

(A.2.14)

If ξ is known, the maximum likelihood estimates are obtained by solving

(A.2.15)

using a modified Newton-Raphson iteration scheme [Hosking and Wallis, 
1987].

Reduced variate

(A.2.16)

(A.2.17)

(A.2.18)
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Generalised Pareto distribution
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A.3 GUMBEL DISTRIBUTION
Definition

Parameters: ξ (location), α (scale)

Range: α > 0, −∞ < x < ∞

(A.3.1)

(A.3.2)

(A.3.3)

Moments

(A.3.4)

(A.3.5)

where γE = 0.5772… is Euler’s constant.

L-moments

(A.3.6)

(A.3.7)

Moment estimates
Moment estimates of ξ and α are obtained from (A.3.4)-(A.3.5)

(A.3.8)
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Gumbel distribution
Gumbel (1954) proposed a least squares estimation method based on the 
linear relationship between the ordered observations and the correspond-
ing order statistics based on the Gumbel reduced variate. This method can 
also be interpreted as a finite sample size correction to the moment esti-
mates. The estimates of ξ and α are given by

(A.3.9)

where mn and sn are, respectively, the mean and the standard deviation of 
the order statistics based on the Gumbel reduced variate using the Weibull 
plotting position

(A.3.10)

For n → ∞ the estimates in (A.3.9) converges to the moment estimates in 
(A.3.8).

L-moment estimates
L-moment estimates of ξ and α are obtained from (A.3.6)-(A.3.7)

(A.3.11)

Maximum likelihood estimates
The maximum likelihood estimate of α is obtained by solving

(A.3.12)

using Newton-Raphson iteration. The estimate of ξ is subsequently 
obtained from

(A.3.13)
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Reduced variate

(A.3.14)

Truncated Gumbel Distribution
A truncated Gumbel distribution for modelling exceedances above the 
threshold level in the PDS can be defined by truncating the Gumbel distri-
bution at the threshold level. The probability density function g(x), cumu-
lative distribution function G(x) and the quantile function xp are 

(A.3.15)

(A.3.16)

(A.3.17)

where x0 is the threshold level, and f(x) and F(x) are the probability den-
sity function and cumulative distribution function, respectively, of the 
Gumbel distribution.

The maximum likelihood estimates of ξ and α are obtained by solving the 
following equations using Newton-Raphson iteration:

(A.3.18)
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Gumbel distribution
(A.3.19)ξ α

n 1
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A.4 GENERALISED EXTREME VALUE DISTRIBUTION
Definition

Parameters: ξ (location), α (scale), κ (shape)

Range: α > 0, ξ+α/κ ≤ x < ∞ for κ < 0, −∞ ≤ x ≤ ξ+α/κ for κ > 0

Special case: Gumbel distribution for κ = 0

(A.4.1)

(A.4.2)

(A.4.3)

Moments

(A.4.4)

(A.4.5)

(A.4.6)

where sgn(κ) is plus or minus 1 depending on the sign of κ, and Γ(.) is the 
gamma function.
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Generalised extreme value distribution
L-moments

(A.4.7)

(A.4.8)

(A.4.9)

Moment estimates
The shape parameter κ is estimated from the skewness estimator cf. 
(A.4.6) using a Newton-Raphson iteration scheme. In this scheme, an ana-
lytic expression of the derivative of the gamma function based on Euler’s 
psi function is used. Moment estimates of ξ and α are subsequently 
obtained from

(A.4.10)

L-moment estimates
For estimation of the shape parameter κ the approximation given by Hosk-
ing [1991] is used which is an extension of the approximation presented 
by Hosking et al. [1985]

(A.4.11)
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If τ3 < −0.1 or τ3 > 0.5, the approximation is less accurate and Newton-
Raphson iteration is applied for further refinement. L-moment estimates 
of ξ and α are subsequently obtained from

(A.4.13)

Maximum likelihood estimates
Maximum likelihood estimates of the GEV parameters are obtained using 
the modified Newton-Raphson algorithm presented by Hosking [1985].

Reduced variate

(A.4.14)

(A.4.15)

(A.4.16)
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Generalised extreme value distribution
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A.5 WEIBULL DISTRIBUTION
Definition

Parameters: ξ (location), α (scale), κ (shape)

Range: α > 0, κ > 0, ξ < x < ∞

Special case: Exponential distribution for κ = 1

(A.5.1)

(A.5.2)

(A.5.3)

The Weibull distribution is a reverse generalised extreme value distribu-
tion with parameters

(A.5.4)

where subscripts GEV and WEI refer to generalised extreme value and 
Weibull distributions, respectively.


















 −

−





 −

=
− κκ

α
ξ

α
ξ

α
κ xxxf exp)(

1


















 −

−−=
κ

α
ξxxF exp1)(

[ ] καξ /1)1ln( pxp −−+=

WEI
GEV

WEI

WEI
GEVWEIWEIGEV κ

κ
κ
αααξξ 1,, ==−=
Appendix A Probability distributions 59



Weibull distribution
Moments

(A.5.5)

(A.5.6)

(A.5.7)

where Γ(.) is the gamma function.

L-moments

(A.5.8)

(A.5.9)

(A.5.10)

Moment estimates
If ξ is known, the moment estimate of κ is obtained by combining (A.5.5) 
and (A.5.6)

(A.5.11)
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which is solved using Newton-Raphson iteration. In this scheme, an ana-
lytic expression of the derivative of the gamma function based on Euler’s 
psi function is used. The moment estimate of α is then given by

(A.5.12)

If ξ is unknown, the moment estimate of κ is obtained from the skewness 
estimator cf. (A.5.7) using Newton-Raphson iteration. The iterative 
scheme is similar to the one applied for estimation of the shape parameter 
of the GEV distribution using –γ3 and κGEV = 1/κ. The skewness estimator 
is corrected according to the bias correction formula given by Bobée and 
Robitaille [1975]

(A.5.13)

which is valid for 0.25 ≤ γ3 ≤ 5.0 and 20 ≤ n ≤ 90. The bias correction fac-
tor β is shown in Fig A.5.1. If γ3 or n fall outside the ranges of the Bobée-
Robitaille formula, the skewness is corrected using the following general 
bias correction

(A.5.14)

Moment estimates of ξ and α are given by

(A.5.15)
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Weibull distribution
Fig A.5.1 Bias correction factor β of the sample skewness γ for the Weibull 
distribution.

L-moment estimates
If ξ is known, L-moment estimates of α and κ are given by

(A.5.16)

If ξ is unknown, the shape parameter is estimated from the approximate 
formula (A.4.11) for estimation of the shape parameter of the GEV distri-
bution using –τ3 and κGEV = 1/κ. L-moment estimates of ξ and α are then 
given by

(A.5.17)
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Maximum likelihood estimates
If ξ is known, the maximum likelihood estimate of κ is obtained by solv-
ing

(A.5.18)

using Newton-Raphson iteration. The maximum likelihood estimate of α 
is subsequently obtained from

(A.5.19)

Reduced variate

(A.5.20)
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(A.5.22)
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Weibull distribution
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A.6 FRECHÉT DISTRIBUTION
Definition

Parameters: ξ (location), α (scale), κ (shape)

Range: α > 0, κ > 0, ξ < x < ∞

(A.6.1)

(A.6.2)

(A.6.3)

Moments

(A.6.4)

(A.6.5)

(A.6.6)

where Γ(.) is the gamma function. The Frechét distribution is defined only 
for skewness larger than the skewness of the Gumbel distribution, i.e. γ3 > 
1.1396.
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Frechét distribution
Moment estimates
For estimation of κ the method proposed by Kadoya [1962] is employed. 
A reduced variate y is defined as follows

(A.6.7)

Since y is a linear transformation of x, the coefficient of skewness of y and 
x are identical. The expected value of the ordered sample y(1) ≤ y(2) ≤ ... ≤ 
y(n) is given by

(A.6.8)

An estimate of κ can now be found by solving

(A.6.9)

using iteration.

Since the computation of the expected value of y is numerically compli-
cated, an approximation of the non-exceedance probability is introduced

(A.6.10)
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where

(A.6.11)

For sample sizes larger than about 40, numerical rounding errors become 
dominant for calculation of E{y(1)}. Hence, for n > 40 an asymptotic 
approximation is used, assuming a symmetric non-exceedance probability

(A.6.12)

The approximated E{y(i)} to be used in (A.6.9) is finally obtained from 
(A.6.7)

(A.6.13)

The estimation procedure can be interpreted as a bias correction to the 
skewness estimator. The bias correction factor β is given by

(A.6.14)

where  is obtained from (A.6.6) using the estimated value of κ. The 
bias correction factor is shown in Fig A.6.2.
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Frechét distribution
Fig A.6.2 Bias correction factor β of the sample skewness γ for the Frechét 
distribution.

Having estimated κ, moment estimates of ξ and α are subsequently 
obtained from

(A.6.15)

Reduced variate

(A.6.16)
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A.7 GAMMA/PEARSON TYPE 3 DISTRIBUTION
Definition

Parameters: ξ (location), α (scale), κ (shape)

Range: κ > 0, ξ ≤ x < ∞ for α > 0, −∞ ≤ x ≤ ξ for α < 0

Special cases: Exponential distribution for κ = 1 and α > 0. Normal distri-
bution for γ = 0

(A.7.1)

(A.7.2)

(A.7.3)

where Γ(.) is the gamma function, and G(.,.) is the incomplete gamma 
integral. No explicit expression of the quantile function is available. The 
standardised quantile up is determined as the solution of F(u) = p where u 
=(x−ξ)/α using Newton-Raphson iteration.

Moments

(A.7.4)

(A.7.5)

(A.7.6)
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Gamma/Pearson Type 3 distribution
L-moments

(A.7.7)

(A.7.8)

(A.7.9)

where Ix(.,.) is the incomplete beta function ratio. Rational-function 
approximations of τ3 as a function of κ are given by Hosking and Wallis 
[1997].

Moment estimates
If ξ is known, moment estimates of α and κ are obtained from (A.7.4)-
(A.7.5)

(A.7.10)

If ξ is unknown, the shape parameter κ is estimated from the skewness 
estimator cf. (A.7.6). The skewness estimator is corrected according to the 
bias correction formula given by Bobée and Robitaille [1975]

(A.7.11)

which is valid for 0.25 ≤ γ3 ≤ 5.0 and 20 ≤ n ≤ 90. The bias correction fac-
tor β is shown in Fig A.7.3. If γ3 or n fall outside the ranges of the Bobée-
Robitaille formula, the skewness is corrected using the following general 
bias correction

(A.7.12)
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Moment estimates of ξ and α are obtained from (A.7.4)-(A.7.5)

(A.7.13)

where sgn(.) is plus or minus 1, depending on the sign of .

Fig A.7.3 Bias correction factor β of the sample skewness γ for the Pearson 
Type 3 distribution.

L-moment estimates
If ξ is known, L-moment estimates of α and κ are obtained from (A.7.7)-
(A.7.8). For estimation of κ, rational-function approximations of κ as a 
function of the L-coefficient of variation τ2 are applied [Hosking, 1991]

For τ2 < ½:

(A.7.14)
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Gamma/Pearson Type 3 distribution
For τ2 ≥ ½:

(A.7.15)

The coefficients of the rational functions are shown in Table A.7.1. The 
estimate of α is subsequently obtained from

(A.7.16)

For estimation of κ when ξ is unknown, rational-function approximations 
of κ as a function of the L-skewness are applied [Hosking and Wallis, 
1997]

For τ3 < 1/3:

(A.7.17)

For τ3 ≥ 1/3:

(A.7.18)

The coefficients of the rational functions are shown in Table A.7.1. The 
estimates of ξ and α are subsequently obtained from

(A.7.19)
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Maximum likelihood estimates
If ξ is known, maximum likelihood estimates are obtained from the fol-
lowing set of equations

(A.7.20)

where ψ(.) is Euler’s psi function. An estimate of κ is found from the first 
equation using bisection.

Reduced variate

(A.7.21)

Table A.7.1 Coefficients of the rational-function approximations (A.7.14)-
(A.7.15) and (A.7.17)-(A.7.18).

Ai Bi Ci Di

A1=-0.3080 B1=0.7213 C1=0.2906 D1=0.36067

A2=-0.05812 B2=-0.5947 C2=0.1882 D2=-0.59567

A3=0.01765 B3=-2.1817 C3=0.0442 D3=0.25361

B4=1.2113 D4=-2.78861

D5=2.56096

D6=-0.77045
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Gamma/Pearson Type 3 distribution
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A.8 LOG-PEARSON TYPE 3 DISTRIBUTION
Definition

Parameters: ξ (location), α (scale), κ (shape)

Range: κ > 0, exp(ξ) ≤ x < ∞ for α > 0, 0 ≤ x ≤ exp(ξ) for α < 0

Special case: 2-parameter log-normal distribution for γy = 0

If X is distributed according to a log-Pearson Type 3 distribution, then Y = 
ln(X) is Pearson Type 3 distributed. The parameters ξ, α and κ are, respec-
tively, the location, scale and shape parameter of the corresponding Pear-
son Type 3 distribution.

(A.8.1)

(A.8.2)

(A.8.3)

where Γ(.) is the gamma function, and G(.,.) is the incomplete gamma 
integral. No explicit expression of the quantile function is available. The 
standardised quantile up is determined as the solution of F(u) = p where u 
= (ln(x)−ξ)/α using Newton-Raphson iteration

Moment estimates

Moments in log-space
Parameter estimates are obtained from the sample moments of the loga-
rithmic transformed data {yi = ln(xi), i = 1,2,...,n} using (A.7.11)-(A.7.13).
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Log-Pearson Type 3 distribution
Moments in real space
Bobée [1975] proposed an estimation method based on the moments in 
real space. The moments about the origin are given by

(A.8.4)

The estimate of α is obtained from

(A.8.5)

where the sample moments are calculated as

(A.8.6)

Eq. (A.8.5) is solved using a Newton-Raphson iteration scheme. Estimates 
of ξ and κ are subsequently obtained from

(A.8.7)

These estimates are corrected using a bias correction of the equivalent 
Pearson Type 3 skewness cf. (A.7.6) according to the Bobée and 
Robitaille [1975] formula.

L-moment estimates
Parameter estimates are obtained from the sample L-moments of the loga-
rithmic transformed data {yi = ln(xi), i = 1,2,...,n} using (A.7.17)-(A.7.19).
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A.9 LOG-NORMAL DISTRIBUTION
Definition

Parameters: ξ (location), µy (mean), σy (standard deviation)

Range: σy > 0, x > ξ

If X is distributed according to a log-normal distribution, then Y = ln(X-ξ) 
is normally distributed. The parameters µy and σy2 are the population 
mean and variance of Y.

(A.9.1)

(A.9.2)

(A.9.3)

where Φ(.) and Φ-1(.) are, respectively, the cumulative distribution func-
tion and the quantile function of the standard normal distribution.

Moments
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Log-normal distribution
L-moments

(A.9.7)

(A.9.8)

Moment estimates
If ξ is known, moment estimates of µy and σy are given by the sample 
mean and standard deviation of the logarithmic transformed data {yi = 
ln(xi-ξ), i =1,2,…,n}.

If ξ is unknown, four different estimation methods are available. Two 
methods based on a lower bound quantile estimator of ξ, and two methods 
based on the sample moments in real space {xi, i=1,2,…,n} where a bias 
correction of the sample skewness is adopted.

Lower bound quantile estimators
The lower bound quantile estimator of ξ proposed by Iwai [1947] is given 
by

(A.9.9)

where x(n) ≤ x(n-1) ≤ … ≤ x(1) is the ordered sample, M is the truncated inte-
ger value of n/10, and xg = (x1x2…xn)1/n is the geometric mean. The 
restriction x(i) + x(n+i-1) – 2xg > 0 must be satisfied to obtain an estimate of 
ξ.

Stedinger [1980] proposed a slightly different estimator, which uses the 
sample median instead of the geometric mean and includes only the larg-
est and the smallest observed values, i.e.

(A.9.10)

where xmed is the sample median equal to x((n+1)/2) for odd sample sizes, 
and ½(x(n/2)+x(n/2+1)) for even sample sizes.
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Having estimated the location parameter, estimates of µy and σy are given 
by the sample mean and standard deviation of the logarithmic transformed 
data {yi = ln(xi- ), i =1,2,…,n}.

Sample moments in real space
For estimation of the three parameters from the sample moments of {xi, 
i=1,2,…,n} a bias correction of the sample skewness is adopted

(A.9.11)

Two different bias correction formulae are employed (1) the Ishihara-
Takase formula, and (2) the Bobée-Robitaille formula.

In the bias correction procedure proposed by Ishihara and Takase [1957] 
an estimation method based on order statistics is employed. In this case 
the following parameterisation of the log-normal distribution is applied

(A.9.12)

A reduced variate y is defined as follows

(A.9.13)

Since y is a linear transformation of x, the coefficient of skewness of y and 
x are identical. The expected value of the ordered sample u(1) ≤ u(2) ≤ ... ≤ 
u(n) is determined by using the Hazen plotting position

(A.9.14)
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Log-normal distribution

)

An estimate of κ can now be found by solving

(A.9.15)

using an iterative scheme. The bias correction factor β is then given by

(A.9.16)

where  is obtained from

(A.9.17)

The bias correction factor is shown in Fig A.9.4.

The parameter σy is estimated from the bias-corrected skewness estimator 
cf. (A.9.6) using a Newton-Raphson iteration scheme. Estimates of ξ and 
µy are subsequently obtained from (A.9.4)-(A.9.5)

The bias correction proposed by Bobée and Robitaille [1975] reads

(A.9.18)

which is valid for 0.25 ≤ γ3 ≤ 5.0 and 20 ≤ n ≤ 90. The bias correction fac-
tor β is shown in Fig A.9.5. If γ3 or n fall outside the ranges of the Bobée-
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Robitaille formula, the skewness is corrected using the following general 
bias correction

(A.9.19)

(A.9.20)

Fig A.9.4 Bias correction factor β of the sample skewness γ for the log-normal 
distribution [Ishihara and Takase, 1957].
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Log-normal distribution
Fig A.9.5 Bias correction factor β of the sample skewness γ for the log-normal 
distribution [Bobée and Robitaille, 1975].

L-moment estimates
If ξ is known, µy and σy are estimated from the sample L-moments of the 
logarithmic transformed data {yi = ln(xi-ξ), i = 1,2,...,n}.

(A.9.21)

Maximum likelihood estimates
If ξ is known, maximum likelihood estimates of µy and σy are given by

(A.9.22)
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If ξ is unknown, the maximum likelihood estimate of ξ is obtained by 
solving

(A.9.23)

using a bisection iteration scheme. The parameter estimates of µy and σy 
are subsequently obtained from (A.9.22).

Reduced variate

(A.9.24)
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Log-normal distribution
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A.10 SQUARE ROOT EXPONENTIAL DISTRIBUTION
Definition

Parameters: α (scale), κ (shape)

Range: α > 0, κ > 0, x ≥ 0

The distribution was defined by Etoh et al. [1987].

(A.10.1)

(A.10.2)

(A.10.3)

The square root exponential distribution is a mixed distribution with a 
finite probability mass placed at x = 0. The remaining probability is con-
tinuously distributed for x > 0. No explicit expression of the quantile func-
tion exists. The quantile is calculated from (A.10.3) using Newton-
Raphson iteration.

Maximum likelihood estimates
The maximum likelihood estimate of α is obtained from

(A.10.4)

using Newton-Raphson iteration. The estimate of κ is subsequently found 
from

(A.10.5)
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Square root exponential distribution
Reduced variate

(A.10.6)

(A.10.7)
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A.11 AUXILIARY FUNCTIONS
Gamma function

For calculation of the gamma function, a numerical function that calcu-
lates the logarithm of the gamma function is employed. The applied 
numerical method is that of Pike and Hill [1966].

Euler’s psi function
Euler’s psi function is the derivative of the logarithm of the gamma func-
tion

(A.11.1)

The applied numerical method for calculation of Euler’s psi function is 
that of Bernardo [1976].

Incomplete gamma integral
The incomplete gamma integral is defined as

(A.11.2)

The applied numerical method is that of Shea [1988].

Cumulative distribution function of standard normal distribution
The cumulative distribution function of the standard normal distribution 
Φ(.) can be expressed in terms of the error function erf(.)

(A.11.3)

For calculation of the error function the numerical method in Hart et al. 
[1968] based on a rational function approximation is applied.

Quantile function of standard normal distribution
The numerical method applied for calculation of the quantile of the stand-
ard normal distribution is that of Wichura [1988] which is based on a 
rational function approximation.
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Auxiliary functions
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