

Richiesta Permesso di Ricerca per rame, piombo,

zinco, argento, oro, cobalto, nickel e minerali associati

"Corchia"

Comuni di Berceto e Borgo Val di Taro

Provincia di Parma

Regione Emilia Romagna

PROGRAMMA DEI LAVORI

preparato da

Dott. S. Zanin

Dott. M. de Angelis, Legale Rappresentante ed Amministratore Ordine dei Geologi Regione Campania N. 1146

Oltre il Colle, 26/02/2021

INDICE

1	Introduzione								
2	Localizzazione dell'area								
3	Capacità tecnico-economica della Società								
4	I siti esplorativi ex produttivi								
5	Note della cartografia geologica inerenti al Permesso di Ricerca "Corchia"								
6	Inqu	adramento geologico regionale	15						
(5.1	Il modello geodinamico dell'area Appenninica di interesse minerario	18						
(5.2	Stratigrafia e giacitura dei corpi mineralizzati	19						
(5.3	Note sulla geologia locale delle aree esplorative	21						
(5.4	I principali caratteri geominerari dei siti individuati per la ricerca esplorativa	25						
	6.4.1	L Corchia	26						
7	Cenr	ni sull'attività produttiva storica ed il potenziale disponibile	28						
8	Prog	ramma dei lavori	29						
8	3.1	Raccolta e valutazione analitica dei lavori svolti in precedenza	29						
8	3.2	Mappatura geologica di dettaglio	30						
8	3.3	Campionatura geochimica di superficie	30						
8	3.4	Stream sediment sampling	31						
8	3.5	Prospezioni geofisiche	31						
	8.5.1	Magnetometria	32						
	8.5.2	2 Elettromagnetismo	32						
	8.5.3	3 Potenziale spontaneo	32						
	8.5.4	Polarizzazione indotta e resistività	33						
8	3.6	Studio con metodologie di Remote Sensing delle alterazioni nell'intorno delle aree mineralizzat 33	e						
9	Prev	isione di spesa	35						
10	Cronoprogramma								
11	Bibli	ografia	38						

INDICE DELLE TABELLE

Tabella 1: Coordinate Permesso di Ricerca "Corchia" (da Geoportale Nazionale, servizio	
trasformazione coordinate).	5
Tabella 2: Previsione di spesa per programma esplorativo	35
Tabella 3: Cronoprogramma dei lavori nel triennio 2021-2023	37

INDICE DELLE FIGURE

Figura 2: Inquadramento territoriale e perimetrazione del Permesso di Ricerca "Corchia" su cartografia ambientale e geologica (de Angelis, Energia Minerals Italia S.r.l., 2020).7 Figura 3: Inquadramento territoriale dei progetti in essere di EMI e SMI: Punta Corna (Piemonte), Gorno (Lombardia) e in fase di richiesta Monte Bianco (Liguria) (de Angelis, 2020).....7 Figura 4: Inquadramento geologico del Permesso di Ricerca "Corchia" su base cartografica CARG Figura 5: Inquadramento geologico del Permesso di Ricerca "Corchia" su mappa dell'Appennino Settentrionale (modificato dopo Conti et alii, 2019-2020)......10 Figura 6: Stralcio della legenda della Carta Geologica del Progetto CARG, Foglio 216 Borgo Val di Taro in scala 1:10.000 (modificato dopo CARG, 2002).15 Figura 7: Stralcio della legenda della Carta Geologica dell'Appennino Settentrionale, Foglio Ovest (Regioni Emilia-Romagna, Marche, Toscana e Umbria), in scala 1:250.000 (Conti et alii, 2019).....16 Figura 8: Schema litostratigrafico con indicazione delle unità di cui sopra, del dominio delle Liguridi Interne ed Esterne (Conti et alii, 2020).....16 Figura 9: Semplificazione della mappa strutturale delle unità ofiolitiche nel settore (a) Alpino Occidentale e (b) Appenninico Settentrionale, separati dalla linea tettonica Sestri-Voltaggio (Garuti Figura 10: Mappa tettonica schematica e sezione geologica attraverso l'Appennino Settentrionale. Liguridi Interne (grigio scuro), Liguridi Esterne (grigio chiaro) e sequenze ofiolitiche (nero), Garuti et Figura 11: Fasi geodinamiche dell'apertura dell'oceano Ligure-Piemontese dal (a) Triassico al (b) Giurassico Medio-Superiore e (c) Cretaceo Inferiore. Questo stadio evolutivo indica l'inizio di una fase compressiva con formazione di una subduzione intra-oceanica. Paleo-localizzazione delle unità ofiolitiche delle Alpi Occidentali (WAO), Liguridi Interne (IL) e Liguridi Esterne (EL) (modificato dopo Figura 12: (a) Valori medi di piombo, argento, oro, zinco e rame, normalizzati rispetti al mantello primitivo per i depositi VMS dell'Appennino Settentrionale (linea nera) comparati con altre tipologie di depositi VMS; (b) diagramma ternario per i depositi VMS dell'Appennino Settentrionale con indicazione del campo di appartenenza per la tipologia Cyprus-type (Garuti et alii, 2008)......20 Figura 13: (a) Confronto tra sequenza ideale e (b) alcune sequenze delle Liguridi Esterne. (1) serpentinite; (2) cumuliti mafiche-ultramafiche; (3) gabbro; (4) complesso a dicchi mafici; (5) basalti "a cuscino"; (6) selce; (7) breccia ofiolitica; (8) calcare a Calpionella; (9) Scisti a Palomini. (Garuti et Figura 14: Schema stratigrafico per i depositi VMS nelle ofioliti dell'Appennino Settentrionale. (1) deposito stratiforme al contatto tra brecce serpentinitiche e basalti "a cuscino" (Monte Bardeneto, Reppia 1 e Monte Bianco 1); (2) deposito stratiforme tra sequenza vulcanica e la copertura sedimentaria (Reppia 2 e Corchia); (3) deposito stratabound dentro i basalti "a cuscino" (Libiola); (4) deposito stockwork vein (in complesso strutturale costituito da vene idrotermali) in (a) serpentinite (Vigonzano, Ferriere, Groppallo e Santa Maria); (b) gabbro (Campegli); (c) in basalti "a cuscini" (Casali, Reppia 3, Monte Bianco 2, Boccassuolo e Montecreto) (Garuti et al., 2008)......21 Figura 15: Schematizzazione dei rapporti stratigrafici tra ofioliti e copertura sedimentaria proposto da Decadia e Elter (Ardigò e Minniti, 1975).....22 Figura 16: Termini litologici e relative mineralizzazioni facenti parte dei complessi ofiolitici (Rimin, Figura 17: Litotipi e loro paragenesi (Rimin, 1990)......23 Figura 18: Mineralizzazioni e rapporti stratigrafici tra ofioliti e copertura sedimentaria proposto da Brigo e Ferraio (Ardigò e Minniti, 1975).24

Figura 19: Indicazione associativa di mineralizzazione e ganga tipiche nei depositi VMS Figura 20: Schema delle mineralizzazioni nelle unità diabasiche proposto da Upadhyay e Strong. (a) mineralizzazioni massicce e stockwork derivate da attività vulcanica sottomarina; (b) dettaglio di (a); (c) dettaglio di (a) a seguito di attività tettonica con formazione di faglie e mobilizzazione di elementi chimici in fluidi (modificato dopo Ardigò e Minniti, 1975)......25 Figura 21: Rappresentazione schematica in mappa e sezione del deposito al Cantiere Speranza Figura 22: Corpi mineralizzati a solfuri massivi: (a) Cantiere Donnini, affioramento in parete; (b) Cantiere Donnini, in sotterraneo. (1) VMS nella parte sommitale dei basalti "a cuscino"; (2) olistostromi di scisti a palombini (Garuti et alii, 2008)......27 Figura 23: Immagini dei lavori in sottosuolo al Cantiere Donnini con indicazione del contatto tra lenti di VMS e la copertura sedimentaria (Zaccarini & Garuti 2013).....27 Figura 24: Immagini delle lenti mineralizzate e la stratigrafia al Cantiere Pozzo (Zaccarini & Garuti Figura 25: Dati produttivi storici cupriferi (Rimin, 1990)......28 Figura 26: Concentrazioni in wt% per rame, in ppm per zinco, piombo, nichel, cobalto, arsenico ed uranio e in ppb per oro e argento. Abbreviazioni: pirite (Py), calcopirite (Cp), sfalerite (Sph), guarzo (Qz), calcite (Ca), siderite (Sid), clorite (Chl), galena (Gn), freibergite (Fr) (da Angelis, 2020)...........28 Figura 27: Raccolta di immagini rappresentative dell'attività esplorativa da piano lavori; (a) elaborazione e produzione di cartografia geologica previa mappatura geologico-strutturale (fonte: Alta Zinc Ltd., Progetto "Gorno"); (b) campionamento corpi mineralizzati (fonte: Alta Zinc Ltd., Progetto "Gorno"); (c) analisi geochimica speditiva di terreno con ausilio dello strumento pXRF Olympus Innov-X Delta (fonte: Nickel laterite mineralization explored by portable XRF); (d) stream sediment sampling (fonte: Assessment of drainage basin contamination by stream and floodplain Figura 28: Acquisizione del potenziale spontaneo utilizzando due vasetti non polarizzabili (capo positivo ed un capo negativo in un circuito) in ceramica porosi contenenti solfato di rame (CuSO₄), poggianti su suolo poroso sciolto ma "compatto" per garantire aderenza suolo-vasetto; cavetti mono-polari flessibili di rame per la trasmissione del segnale; millivolmetro con DC 200 mV, risoluzione di 0.1 mV ed impedenza maggiore a 10 M Ω (fonte: Alta Zinc Ltz, prospezione geofisica Figura 29: Prospezione geoelettrica (polarizzazione indotta e resistività) con metodologia polodipolo: (a) trasmettitore alla base Tx per invio segnale elettrico; (b) ricevitore in posizione mobile lungo linee di acquisizione a passo "Tx-ricevitore-picchetti" costante; (c & d) stendimento di cavetti di rame per trasferimento-registrazione del segnale geoelettrico (fonte: Alta Zinc Ltd., prospezione Figura 30: Schema metodico e concettuale della tecnica remote sensing iperspettrale adottato nella missione PRISMA (fonte: Agenzia Spaziale Italiana)......35

1 Introduzione

Questa relazione è prodotta in ottemperanza all'Art. 4 del Regio Decreto 1443/27, come successivamente modificato dal DPR 620/1955 e dal DPR 382/1994 ed all'Art. 1 del DPR 128/59 e ss.mm.ii. ed accompagna l'istanza di rilascio di permesso di ricerca "Corchia" per rame e associati, depositata presso Regione Emilia Romagna, come previsto dall'Art. 34 del D. Lgs. 112/1998.

L'area di interesse si colloca in provincia di Parma, nel territorio dei Comuni di Berceto e di Borgo Val di Taro, come raffigurato nelle Figure 1 e 2, di seguito.

L'interesse del proponente ad ottenere il permesso "Corchia" è da ascrivere nel contesto delle attività di esplorazione a scopo minerario condotte da Energia Minerals Italia (EMI) che, in fase preliminare, ha ritenuto di approfondire il potenziale dell'area in oggetto, già interessata in passato da attività di coltivazione ed esplorazione mineraria. Dati storici d'archivio, relativi alle dimensioni e alla qualità delle mineralizzazioni presenti, sono disponibili ma insufficienti, sia per le tecniche impiegate che per la copertura delle aree investigate; EMI ritiene quindi necessario un lavoro di rivalutazione dei dati esistenti e l'attualizzazione degli stessi, al fine di validarli ed integrarli, tramite attività a carattere preliminare ed avvalendosi di tecniche non invasive di analisi, descritte in dettaglio nel capitolo 7, di seguito.

2 Localizzazione dell'area

Il permesso di ricerca "Corchia" copre una superficie di 3534 ettari; le coordinate dei vertici del permesso sono indicate in Tabella 1, di seguito.

Il sistema di coordinate geografiche usato è WGS_1984_UTM_Zona_32N, proiezione Gauss-Boaga. La base topografica usata nella cartografia di progetto è prodotta dalla Regione Emilia-Romagna ed è stata scaricata dal portale informatico della Regione. Le basi topografiche relative ai permessi sono Carta Tecnica Regionale, carte geologiche e mappe di sensibilità ambientali. La produzione cartografica per questa relazione è fatta in ambiente GIS ArcView[®], versione 9.3.

Vertice	Est	Nord
V1	1572300	4932600
V2	1575400	4932500
V3	1577000	4930900
V4	1573500	4926700
V5	1568700	4927000
V6	1568700	4930000

Tabella 1: Coordinate Permesso di Ricerca "Corchia" (da Geoportale Nazionale, servizio trasformazione coordinate).

L' area esplorativa definita dal Permesso di Ricerca "Corchia" ricade territorialmente all'interno della Regione Emilia-Romagna, e dal punto di vista locale rientra istituzionalmente all'interno della Provincia di Parma, più precisamente nella porzione meridionale al confine con la Regione Toscana e la Provincia di Massa-Carrara (Fig. 1).

Il Permesso di Ricerca insiste sul territorio di due comuni, il Comune di Berceto, di cui Corchia è frazione e, ad ovest, il Comune di Borgo Val di Taro (Fig. 2).

La rappresentazione grafica è stata realizzata su base cartografica in scala 1:50.000 (de Angelis, 2020), con indicazione delle aree SIC-ZPS (si rimanda allo studio di impatto ambientale per i dettagli) e unità geologiche di interesse, le quali verranno descritte nel paragrafo seguente.

Un dettaglio puramente indicativo delle altre attività di prospezione inerenti alla stessa tipologia di deposito minerario è indicato in figura 2, con indicazione del progetto VMS Liguria, Permesso di Ricerca "Monte Bianco" (Regione Liguria, Provincia di Genova e Provincia di La Spezia).

In aggiunta, vi è indicazione sul territorio italiano degli altri progetti e licenze acquisite da Alta Zinc Ltd attraverso le controllate Energia Minerals Italia S.r.l e Strategic Minerals Italia S.r.l.(Fig. 3): Punta Corna, progetto cobaltifero-nichelifero (Regione Piemonte, Provincia di Torino) e Gorno, progetto zincifero e piombifero (Regione Lombardia, Provincia di Bergamo), a testimonianza della ricchezza geomineraria della nostra nazione.

Figura 1: Inquadramento territoriale su immagine satellitare di Google Earth, con rappresentazione del perimetro del Permesso di Ricerca "Corchia" in Provincia di Parma.

Figura 2: Inquadramento territoriale e perimetrazione del Permesso di Ricerca "Corchia" su cartografia ambientale e geologica (de Angelis, Energia Minerals Italia S.r.l., 2020).

Figura 3: Inquadramento territoriale dei progetti in essere di EMI e SMI: Punta Corna (Piemonte), Gorno (Lombardia) e in fase di richiesta Monte Bianco (Liguria) (de Angelis, 2020).

3 Capacità tecnico-economica della Società

La società Energia Minerals (Italia) Srl (EMI) è una società registrata in Italia, con sede legale a Milano, in Corso di Porta Romana 6, controllata interamente dalla società Alta Zinc LTD (precedentemente denominata Energia Minerals Limited), a sua volta incorporata a Perth (Australia) e iscritta nel Registro Delle Società in Australia col N° ABN 63 078 510 988.

Alta Zinc (AZI) è quotata sul mercato azionario australiano. Il supporto economico è assicurato sia da investitori istituzionali sia da azionisti e ciò permette l'avvio e la continuità nel tempo di progetti il cui potenziale è riconosciuto ed alimentato dal proseguire delle attività di ricerca.

Informazioni più dettagliate si possono ottenere collegandosi al sito http://www.altazinc.com.

AZI è titolare, a nome della controllata EMI, del permesso di ricerca "Cime" per Zinco-Piombo-Argento e associati, situato nello storico Distretto Minerario di Gorno, in provincia di Bergamo, dove l'azienda sta accelerando la definizione delle risorse e lo sviluppo minerario con l'obbiettivo di riavviare la produzione.

Ad oggi, oltre 15 milioni di Euro sono stati investiti nel Progetto denominato "Gorno", per lavori di messa in sicurezza delle gallerie esistenti, sondaggi a carotaggio continuo per 20.000 metri, studi e monitoraggio ambientale ed archeologico e studi di fattibilità tecnico-economica.

A nome della controllata Strategic Minerals Italia S.r.l., AZI è inoltre titolare di due permessi di ricerca, denominati "Punta Corna" e "Balme", in provincia di Torino, per cobalto e associati. Indagini preliminari sono già state effettuate, dal 2018 ad oggi, nell'area di Punta Corna, per la quale è ora in itinere un'istanza di rinnovo, con relativa procedura ambientale presso il MATTM, che include anche la realizzazione di sondaggi dalla superficie.

Nel corso dei lavori si utilizza prevalentemente personale italiano, sia di diretto impiego che tramite appalto, reperito in loco, quando possibile. Alcuni studi specialistici – quali test metallurgici ed analisi chimico-fisiche, vengono realizzati all'estero, ma all'interno del territorio europeo.

Lo scopo principale della Società è di definire depositi di minerali economicamente utili con tecniche prospettive d'avanguardia e di avviarne l'eventuale estrazione con metodologie moderne e nel pieno rispetto delle norme ambientali e di tutela della salute pubblica. Si evidenzia che le attività estrattive sono possibili solo se una concessione mineraria è assegnata alla società interessata (R.D. 1443/1927 e s.m.i.).

4 I siti esplorativi ex produttivi

La presente sezione tecnica del documento deriva da un'accurata selezione del materiale bibliografico (pubblicazioni scientifiche e report tecnici) atto ad identificare le aree vocate mineralogicamente e con caratteri geologico-strutturali, anche supportati da documentazione grafica, che abbiano una valenza ai fini di una indagine preliminare di terreno. I depositi su cui è presente un interesse esplorativo, ricadono su una vasta area che comprende la Regione Emilia-Romagna e la Regione Liguria. Quest'ultimi sono stati inseriti a scopo puramente informativo per testimoniare il potenziale minerario ancora distribuito sul territorio nazionale.

Inoltre, va menzionato che tale materiale bibliografico dovrà essere implementato da un'ulteriore ricerca bibliografica come indicato nel Capitolo 7, soprattutto con l'acquisizione di mappe geologiche di dettaglio realizzate nell'ambito della "Ricerca Mineraria di Base" (Legge 6 Ottobre 1982, n. 752, art. 4) svolta durante gli anni '80 dalla società Rimin del Gruppo ENI. Solo alcuni dei siti nella zona Appenninica Settentrionale della Regione Emilia-Romagna rientrano nella prima fase di indagine geologica. Tali siti fanno parte del cluster della Provincia di Parma indicato come Permesso di Esplorazione "Corchia" (Fig. 2):

• Area mineraria di Corchia: Cantiere Donnini, Cantiere Pozzo, Cantiere Speranza. Quest'area è collocata circa 40 km a sud-ovest di Parma.

In passato l'area dell'Appennino Settentrionale fu interessata da lavori minerali pregressi che sono datati a partire dalla Preistoria (Età del Rame e del Bronzo). L'estrazione successivamente continuò occasionalmente dal XVIII Secolo in poi. Tra 1850 ed il 1910, i metodi di estrazione migliorarono cosicché esplorazione e produzione sistematica vennero intraprese fino alla chiusura dell'ultimo sito produttivo di Libiola negli anni '60. Il primo documento produttivo inerente alla produzione di rame risale al 1865, nel frattempo l'esplorazione portò alla scoperta dei due maggiori depositi dell'area, il Cantiere Donnini e Cantiere Speranza (Fig. 2). La produzione successivamente proseguì fino al 1943 quando vi fu la definitiva chiusura dei cantieri.

In aggiunta ai siti minerari della Provincia di Parma, altri erano presenti sul territorio regionale:

- Area mineraria dell'Emilia-Romagna occidentale: Vigonzano, Groppallo e Ferriere ed altri cantieri minori, in Provincia di Piacenza;
- Area mineraria dell'Emilia-Romagna centrale: Boccassuolo e Montecreto ed altri cantieri minori, in Provincia di Modena.

I depositi sono stati recentemente al centro di interesse e valutazione per future attività di indagine esplorativa preliminare di dettaglio da parte di EMI, sulla scorta di materiale reportistico redatto dalla società Rimin.

In aggiunta, si menziona che alcune delle gallerie produttive e portali di accesso potrebbero non essere accessibili, ma che questo aspetto non influenzerà negativamente l'attività di indagine geologica in quanto i campioni di roccia possono essere prelevati da corpi geologici mineralizzati affioranti in superficie nei pressi di tali aree ammalorate.

In questa fase solo i siti in Provincia di Parma sopra menzionati saranno considerati nell'ambito di una valutazione economica.

5 Note della cartografia geologica inerenti al Permesso di Ricerca "Corchia"

Il Permesso di Ricerca "Corchia" rientra nel dominio geologico dell'Appennino Settentrionale ed è mostrato in figura 4 su base cartografica geologica CARG (2002), Foglio 216 Borgo Val di Taro, originariamente prodotta in scala 1:10.000. In aggiunta, in figura 5 su base cartografica originariamente redatta in scala 1:250.000 della mappa dell'Appennino Settentrionale, Foglio Ovest (Conti *et al.*, 2019-2020).

Le note geologiche che seguono sono inerenti ai corpi geologici che ricadono internamente l'areale del Permesso di Ricerca "Corchia". Tali informazioni sono estratte dalla cartografia e note illustrative del Progetto CARG (2002), rappresentate in figura 6 e dal lavoro di Conti *et alii* (2019-2020) per le Regioni Emilia-Romagna, Marche, Toscana e Umbria, allegate in figura 7.

Di seguito si riporta una descrizione dalle unità geologiche, dalla più recente alla più antica che tendenzialmente riflette anche l'ordine deposizionale e la collocazione spaziale, cioè dall'unità più superficiale alla più profonda (Fig. 8).

Figura 4: Inquadramento geologico del Permesso di Ricerca "Corchia" su base cartografica CARG (modificato dopo CARG, 2002).

Figura 5: Inquadramento geologico del Permesso di Ricerca "Corchia" su mappa dell'Appennino Settentrionale (modificato dopo Conti *et alii,* 2019-2020).

Depositi Continentali Quaternari (Pleistocene-Olocene)

- (a1) Frane in evoluzione: accumuli caotici di elementi litoidi eterogenei ed eterometrici in matrice pelitica, con evidenze di movimento in atto.
- (a₃) Depositi di versante: coperture detritiche ad elementi litoidi eterogenei ed eterometrici in matrice pelitica e/o sabbiosa, accumulati lungo i versanti per gravità.
- (a₆) Detriti di falda: accumuli di elementi litoidi spigolosi ed eterometrici generalmente privi di matrice, alla base di scarpate rocciose.

Dominio Ligure

Unità Tettonica Gottero (Cretacico)

- (GOT) Arenarie di Monte Gottero: arenarie torbiditiche quarzoso-feldspatiche medie e grossolane grigio chiare, in strati da spessi a molto spessi, con frequenti intraclasti verdastri e locali basi erosive, alternate da sottili livelli pelitici nerastri; rapporto A/P>>1. Si associano arenarie fini nerastre laminate e peliti nere, in regolari alternanze di strati medi e sottili, con rapporto a/p circa 1. Alla base intercalazioni metriche di arenarie litiche fini grigio-nocciola, in strati sottili e medi, laminati, alternati a siltiti marnose grigio chiare. Comprende una litozona argillitica GOT_a intercalata probabilmente a piu livelli. Potenza variabile da 700 a 1000 m circa (Santoniano-Paleocene).
- (GOT_a) Litozona argillitica caotica: argilliti nerastre e policrome molto scagliettate, inglobanti blocchi di calcari micritici biancastri e grigi, lembi di bancate calcarenitiche laminate e calcareo-marnose e lembi deformati delle stesse Arenarie di M. Gottero. Si intercala in GOT probabilmente a più livelli. Potenza variabile da 10 a 70 m circa.

Unità Tettonica Media Val Taro (Cretacico)

- (SCB) Arenarie di Scabiazza: sottili alternanze di argilliti nerastre e arenarie fini e medie laminate che passano ad alternanze di arenarie litiche fini e molto fini e marne argillose grigio-nocciola, in strati da molto sottili a spessi (rapporto A/P da <1 a >1). Verso l'alto si inseriscono marne siltose grigie in strati molto spessi con letto arenitico e conglomerato fine ad elementi sedimentari. Comprende una litozona caotica SCB_a probabilmente intercalata a più livelli ed una litozona pelitica policroma SCB_b in passaggio per alternanze nella parte sommitale dell'unità. Contatto stratigrafico con SSI. Potenza valutabile in 700 m circa (Coniaciano?-Santoniano).
- (SCB_a) Litozona caotica: brecce matrice-sostenute a blocchi di calcari grigio-verdini e biancastri e lembi eterometrici di marne grigio-giallastre, inglobati in matrice argillitica nera e verdastra. Potenza variabile da pochi metri a 50 m circa.
- (SCB_b) Litozona pelitica policroma: siltiti nerastre passanti gradualmente ad argille siltose rosso-vinato, localmente si intercalano brecce poligeniche clasto-sostenute ad elevato tenore in clorite, in strati lenticolari (br). Potenza valutabile in 20 m circa.

Unità Tettonica Ottone (Cretacico)

 (OTO) Flysch di Ottone: calcari marnosi e calcari nerastri e grigi a frequenti patine di alterazione bianche, in strati torbiditici spessi e molto spessi a base arenitica laminata, spesso marcatamente ofiolitica; si intercalano regolarmente argilliti nerastre fogliettate in livelli sottili e molto sottili e arenarie medie gradate e laminate in strati sottili e medi. Presenti a vari livelli intercalazioni metriche di brecce ad elementi calcarei ed ofiolitici in matrice pelitica, talora clasto-sostenute. Contatto stratigrafico con CCV. Potenza valutabile in 900 m circa. (Campaniano Inferiore).

- (CCV) Complesso di Casanova: depositi clastici grossolani, con intercalazioni torbiditiche arenaceo-pelitiche e calcareo-marnose; si interpongono lembi eterometrici di litosfera oceanica e continentale (Campaniano Inferiore).
- (CCV_a) Arenarie ofiolitiche: arenarie torbiditiche verdastre e grigio scure in strati gradati da sottili a medi, talora a base conglomeratica, alternati ad argilliti e siltiti scure. Localmente si intercalano arenarie medie grigio chiare, micacee, passanti a marne siltose in strati molto spessi.
- (CCV_b) Argille a blocchi: brecce matrice-sostenute costituite da argille nerastre scagliettate inglobanti clasti di calcilutiti biancastre, serpentiniti, basalti e arenarie fini nerastre, laminate; si interpongono spezzoni di alternanze argillitico-calcaree e calcareo-marnose sempre molto deformate.
- (CCV_c) Brecce poligeniche: brecce poligeniche clasto-sostenute con matrice pelitica o pelitico-sabbiosa e clasti di calcari micritici bianchi e grigi, areniti fini nerastre, serpentiniti, basalti, diaspri e graniti grigiastri.
- (CCV_d) Siltiti nerastre: argilliti siltose nerastre alternate da arenarie fini grigio scure in strati sottili e localmente da arenarie litiche medie grigio scure a base grossolana e tetto marnososiltoso, in strati spessi e molto spessi.

Sono inglobati come olistoliti, o si interpongono tettonicamente, lembi riferibili alle seguenti unità:

- (ap) Argille a palombini
- (Σ) Serpentiniti
- (br₁) Brecce serpentinitiche monogeniche
- (br₂) Brecce serpentinitiche poligeniche
- (βp) Basalti in pillows
- (br₃) Brecce basaltiche
- (γ) Graniti

Unità Tettonica Caio (Cretacico)

- (CAO) Flysch di Monte Caio: calcari marnosi e marne grigio scure in strati torbiditici spessi e molto spessi, con frequenti basi arenitiche fini, sempre laminate; si intercalano sottili livelli argillitici nerastri e localmente strati sottili e medi di arenarie fini grigio scure. Viene distinta una litozona a brecce (CAO_a) posizionata alla base. Contatto stratigrafico discordante con MSL. Potenza da 200 a 400 m (Campaniano Superiore-Maastrichtiano)
- (CAO_a) Litozona a brecce: brecce poligeniche a prevalenti elementi calcarei ed ofiolitici, clasto-sostenute e/o matrice-sostenute, intercalate da marne e calcari marnosi in strati torbiditici molto spessi.

Unità Tettonica Cassio (Cretacico)

- (SCB) Arenarie di Scabiazza: strati torbiditici molto spessi costituiti da un letto decimetrico di arenarie litiche grigie, fini, laminate e ricche in frustoli carboniosi (localmente grossolane e conglomeratiche) che passa ad un potente intervallo di marne sisltose grigio chiare; si intercalano areniti grigio chiare grossolane, in strati medi e spessi, con letto ruditico biancastro ad elementi di micriti bianche e radiolariti verdine, e con tetto di marna calcarea. Rapporto A/P<<1. Contatto stratigrafico discordante con APG. Potenza di circa 200 m (Cenomaniano-Turoniano Inferiore).
- (APG) Argille a Palombini del Torrente Grontone: argilliti grigio scure, verdastre, ocracee e rossastre intercalate da calcari grigio chiari e grigio-verdini silicizzati e talora marnosi, in strati

medi e spessi; si intercalano localmente arenarie torbiditiche fini in strati molto sottili, calcareniti grossolane in strati medi e spessi e marne grigio-verdastre in strati medi. Potenza geometrica circa 200 m (Hauteriviano-Aptiano).

Dominio Subligure

Unità Tettonica Ghiare (Cretacico-Eocene)

- (BEV) Arenarie di Belvedere: arenarie fini e medie grigio-nocciola in strati da medi a molto spessi intercalati da sottili livelli pelitici; sono frequenti arenarie grossolane con intervalli basali di conglomerati sub-centimetrici; rapporto A/P circa 2. Contatto stratigrafico discordante con AMT e BAR. Potenza circa 25 m (Eocene Inferiore?)
- (BAR) Calcari e argille di Rio Baratta: calcari marnosi e calcilutiti bianche a base calcarenitica, in strati torbiditici molto spessi; si intercalano marne siltose grigio chiare e rosate in strati molto spessi, alternate da argilliti marnose brune e rosso-vinato e da strati sottili di calcareniti verdine. Verso l'alto si passa ad argilliti talora marnose nerastre e nocciola con interposti lembi sempre budinati di calcari micritici, calcareniti e marne. Potenza geometrica circa 50 m (Paleocene).
- (GHR) Arenarie e argilliti di Ghiare: arenarie fini grigie e calcareniti biancastre, in strati torbiditici sottili e medi, frequentemente a tetto calcilutitico, regolarmente intercalati da pelite nerastra e marna grigia; rapporto A/P circa 1. Localmente si intercalano arenarie medie grigie, talora a tetto marnoso, in strati spessi. Potenza di 100 m circa. (Campaniano?-Maastrichtiano).
- (SCB) Arenarie di Scabiazza: arenarie fini grigio-nocciola in strati torbiditici sottili regolarmente alternati da livelli argillitico-siltosi grigio scuri; rapporto A/P<1.
 Localmente si intercalano strati sottili di calcareniti grigio chiare a tetto pelitico debolmente marnoso e, al tetto dell'unità, una litozona policroma SCB_b. Potenza di 100 m circa (Coniaciano-Santoniano).
- (SCB_b) Litozona pelitica policroma: siltiti nerastre passanti gradualmente ad argille siltose rosso-vinato. Potenza di 20 m circa.

Da Conti *et alii*:

Dominio Ligure

Dominio Ligure Interno

Unità Gottero, Unità Portello, Unità due Ponti, Unità Bracco-Val Graveglia, Unità Colli-Tavarone, Unità Cravasco-Voltaggio, Unità M. Figogna, Unità Vermallo

 (ILgo): Arenarie di Monte Gottero, Formazione di Marina di Campo, Flysch dell'Elba, Arenarie di Montecatini, Arenarie di Ghiaieto, Scisti zonati Flysch arenacei: arenarie, arenarie calcaree, calcari, marne, siltiti Campaniano-Paleocene Inferiore

Dominio Ligure Esterno – Successione Esterna

Unità Antola, Unità Cassio, Unità Sporno, Unità Morello, Unità Solignano, Unità Media Val di Taro, Unità Farini, Unità Guselli, Unità Samoggia, Unità Groppo Sovrano, Unità S. Fiora, Unità M. Rognosi, Unità Venano

 (EL_{pf}): Pietraforte, Arenarie di M. Gabba, Arenarie di Scabiazza p.p., Arenarie di Ostia, Arenarie di Campi, F.ne di Trasserra, Cicerchina Arenarie, ruditi e siltiti Cretacico

- (EL_{vr}): Arenarie varicolori, F.ne di Villa Radda, F.ne di Villa La Selva, Argille a palombini p.p., Argille di Grizzana Morandi, Argilliti varicolori della Valle del Sillaro, F.ne di Santa Fiora, F.ne di Sillano, Conglomerati di Salti del Diavolo, Argille di Viano, Argille varicolori della Val Samoggia, Argille varicolori di Cassio, Argilliti di Montoggio, Argilliti di San Siro p.p., Argilliti di Guselli, Argille a palombini di M. Rizzone Argilliti varicolori, siltiti, calcari, arenarie calcaree, conglomerati e brecce
- Cretacico-Paleocene Inferiore (EL_{ro}): Blocchi e olistoliti di peridotiti, gabbri, brecce ofiolitiche, basalti e loro copertura sedimentaria (Val Tiberina, M. Rognosi)
 - Giurassico

Dominio Subligure

Unità Canetolo, Unità Penice, Unità Vico, Unità Aveto, Unità Bratica, Unità Sanguineto, Unità Ghiare, Unità Coli, Unità Marra

- (SL_{ar}): Arenarie di Ponte Bratica, Arenarie di Petrignacola, Arenarie di Rio Fuino, F.ne di Cà di Lesso, Melange di Lago, F.ne di Sassonero, F.ne di Salsominore, Brecce di M. Senario, Arenarie di M. Senario, Marne di Marra, Arenarie dell'Aveto, F.ne della Val d'Aveto, Arenarie di Groppo Sovrano, F.ne di Salivolo-Piombino, Arenarie del Belvedere, Melange di Rio Rodichiasso, F.ne di Traschio, F.ne di Monte Staffola p.p. Arenarie vulcanoclastiche, conglomerati, calcareniti, argilliti, marne
 - Eocene Superiore-Miocene Inferiore
- (SL_{ac}): Argille e calcari di Canetolo, Calcari di Groppo del Vescovo, Flysch di Vico, Flysch di M. Penice, Flysch di Poggio Pallore, Scisti di Cala Moresca, Flysch di Grammatica, Calcari e argille del Rio Baratta, F.ne di Canalgrande, F.ne di Ghiare, Argilliti di Rio Nicola, Argille e calcari del Torrente Lavinello, Argille e calcari del Passo di Ticchiano, F.ne di Traschio, F.ne di Monte Staffola p.p.

Argilliti, calcari, siltiti, arenarie, marne Paleocene-Eocene Medio-Superiore

Figura 6: Stralcio della legenda della Carta Geologica del Progetto CARG, Foglio 216 Borgo Val di Taro in scala 1:10.000 (modificato dopo CARG, 2002).

6 Inquadramento geologico regionale

Numerosi autori sia accademici che professionisti in seno alla società Rimin S.p.A. hanno compiuto studi sull'evoluzione tettonica e geologica dell'Appennino Settentrionale, con finestre di dettaglio nelle località ove la "Ricerca di Base" venne finalizzata sulla scorta di dati storici produttivi che vanno indietro di decenni e secoli, e che indicano un potenziale economico minerario ancora presente nel sottosuolo.

Uno studio molto dettagliato e da cui sono state estrapolate note geologiche, sia sull'assetto strutturale che le note giacimentologiche inerenti ai depositi VMS (Volcanic Massive Sulphide deposits) è quello realizzato da Garuti *et alii* (2008). Dal punto di vista geologico regionale, l'Appennino Settentrionale e le Alpi Occidentali, sono separate da una linea tettonica chiamata Linea Sestri-Voltaggio, le unità che vengono separate da questo allineamento tettonico sono frammenti di crosta oceanica risalenti all'oceano Ligure-Piemontese (Fig. 9).

Le unità afferenti ai diversi domini presentano però differenze genetiche in quanto le unità ad ovest della linea tettonica registrano condizioni di alta pressione e bassa temperatura in facies eclogitica e scisti blu mentre le unità ad est della struttura tettonica (settore ligure ed emiliano) mostrano condizioni metamorfiche di bassa temperatura e pressione in facies prehnite-pumpellyite.

LIGURIAN DOMAIN DOMINIO LIGURE

INTERNAL LIGURIAN DOMAIN

Unità Gottero, Unità Portello, Unità Due Ponti, Unità Bracco-Val Graveglia, Unità Colli-Tavarone, Unità Cravasco-Voltaggio, Unità M. Figogna, Unità Vermallo Arenaceous flysch: sandstones, carbonatic sandstones, limestone, maristones,

siltstones. SLa CAMPANIAN - EARLY PALEOCENE Arenarie di M. Gottero, Formazione di Marina di Campo, Flysch dell'Elba, Arenarie di Montecatini, Arenarie di Ghiaieto, Scisti zonati Flysch arenacei: arenarie, arenarie calcaree, calari, marne, siltiti. CAMPANIANO - PALEOCEN INF. EXTERNAL LIGURIAN DOMAIN DOMINIO LIGURE ESTERNO **Outer Succession** SLac Successione esterna Sandstones, rudites, siltstones CRETACEOUS Pietraforte, Arenarie di M. Gabba, Arenarie di Scabiazza p.p., Arenarie di Ostia, Arenarie di Campi, F.ne di Trasserra, Cicerchina Arenarie, ruditi e siltiti. CRETACICO

Varicolored shales, siltstones, limestones, carbonatic sandstones, congiomerates and breccias. CRETACEOUS - EARLY PALEOCENE

Blocks and olistoliths of peridotites, gabbro, ophiolitic breccias, basalts and sedimentary cover (Vai Tiberina, Monti Rognosi). Jurusec

Blocchi e olistoliti di peridotiti, gabbri, brecce ofiolitiche, basalti e loro copertura sedimentaria (Val Tiberina, M. Rognosi) Ginassoc SUBLIGURIAN DOMAIN DOMINIO SUBLIGURE

Unità Canetolo, Unità Penice, Unità Vico, Unità Aveto, Unità Bratica, Unità Sanguineto, Unità Ghiare, Unità Coli, Unità Marra Volcanic-rich sandstones, congiomerates, calcarenites, shales, maristones. Lare Eocene - Eanav Mocene Arenarie di Ponte Bratica, Arenarie di Petrignacola, Arenarie di Rio Fuino, Fue di Cà di Lesso, Melange di Lago, Fue di Sassonero, Fue di Salsominore, Brecce di M.

di Lesso, Melange di Lago, Fine di Sassonero, Fine di Salsominore, Bracce di M. ⁷ Senario, Arenarie di M. Senario, Marne di Marra, Arenarie dell'Aveto, Fine della Val d'Aveto, Arenarie di Groppo Sovrano, Fine di Sallvoli-Piombino, Arenarie dell Belvedere, Melange di Rio Rodichiasso, Fine di Traschio, Fine di Monte Staffola p.p. Arenarie vulcanoclastiche, conglomerati, calcareniti, argittiti, marne. Eocene sur, - Miocene INF.

Shales, limestones, siltstones, sandstones, marlstoners. PALEOCENE - MIDDLE-LATE EOCENE

SYMBOLS

SEGNI CONVENZIONALI

Tectonic contacts between main tectonic units, thrusts, low-angle normal faults. Contatti tra le unità tettoniche principali, sovrascorrimenti, faglie normali a basso angolo

Faults Faglie

> Stratigraphic boundaries Contatti stratigrafici

Figura 7: Stralcio della legenda della Carta Geologica dell'Appennino Settentrionale, Foglio Ovest (Regioni Emilia-Romagna, Marche, Toscana e Umbria), in scala 1:250.000 (Conti et alii, 2019).

Figura 8: Schema litostratigrafico con indicazione delle unità di cui sopra, del dominio delle Liguridi Interne ed Esterne (Conti et alii, 2020).

I depositi a solfuri massivi (VMS) rientrano nel dominio degli Appennini Settentrionali (Northern Appennine Ophiolites o abbreviato NAO). A loro volta le ofioliti si suddividono in ofioliti esterne (External Ligurides) ed interne (Internal Ligurides). La divisione delle unità ofiolitiche è stata effettuata sulla scorta della posizione del nappe durante la fase di formazione e di espansione dell'oceano rispetto alla zona di rifting. In particolare, le Liguridi Interne occupavano la zona prossimale rispetto al centro di generazione di nuova crosta oceanica mentre le Liguridi Esterne d'altro canto erano derivati distali, vicini e transizionali al limite oceanico-continentale della placca Adria (Fig. 10a). Altri elementi distintivi e differenziali tra Liguridi Interne ed Esterne, sono da ricondurre a caratteri petrologici delle rocce peridotitiche e basaltiche che riflettono un grado di deplezione in alcuni elementi chimici che diminuisce dalle Liguridi Interne verso le Liguridi Esterne. Anche il fattore tettonico-deformativo è un fattore discriminante tra le due unità ofiolitiche. In particolare la deformazione aumenta in modo molto marcato dalle Liguridi Interne verso le Esterne. Le Liguridi Interne occupano la posizione più sommitale del nappe tettonico ed in parte sovrascorrono le Liguridi Esterne verso nord-est. La vergenza dei nappe è verso est, con una serie di faglie aventi generica immersione sud-ovest smembrando il nappe in una serie di sub-unità strutturali molto deformate con piegamenti e zone di taglio minori rispetto ai principali (Fig. 10b).

Figura 9: Semplificazione della mappa strutturale delle unità ofiolitiche nel settore (a) Alpino Occidentale e (b) Appenninico Settentrionale, separati dalla linea tettonica Sestri-Voltaggio (Garuti *et al*, 2008).

Figura 10: Mappa tettonica schematica е sezione geologica attraverso l'Appennino Settentrionale. Liguridi Interne (grigio scuro), Liguridi Esterne (grigio chiaro) e sequenze ofiolitiche (nero), Garuti et al. (2008).

6.1 Il modello geodinamico dell'area Appenninica di interesse minerario

L'evoluzione tettonica dell'area è da inserire in un contesto geodinamico che risale all'apertura dell'oceano Ligure-Piemontese, in stretta connessione cronologica con l'apertura dell'oceano Atlantico. L'assottigliamento della crosta continentale europea ed africana ha consentito la risalita di un pennacchio Proterozoico-Permiano profondo con origine nel mantello litosferico il quale fu responsabile anche della messa in posto di numerose, ma relativamente piccole, intrusioni gabbriche (Triassico e Giurassico Medio). Tale attività primordiale è indicata in figura 11a. A seguito di questa risalita, un relativamente piccolo bacino di pull-apart è venuto a crearsi nella placca continentale assottigliata, con esposizione delle unità peridotitiche-gabbriche del basamento a formare il fondale oceanico primitivo.

Successivamente, magmi di natura basaltica (MORB-type) iniziarono ad essere estrusi durante l'attività di oceanizzazione attraverso eruzioni subacquee. Sopra queste unità effusive andarono via via ad intercalarsi depositi selciferi-radiolaritici di ambiente marino distale e profondo (Fig. 11b) durante il Giurassico Superiore.

Basalti a differenti conformazioni quali massicci, "a cuscini" e in strati sottili, venivano man mano prodotti sul fondo dell'oceano lungo la zona di rifting, non ricoprendo interamente le unità mantelliche in fase di smantellamento e sulle quali i sedimenti pelagici si andavano a depositare in discordanza di tipo semplice.

L'erosione fu responsabile della formazione di brecce ofiolitiche litologicamente eterogenee, composte da serpentinite, gabbro, basalto e copertura sedimentaria, quest'ultima accumulatasi in spessori sempre maggiori per approfondimento del bacino e generazione di aree localmente depresse e bordate da strutture tettoniche. Il Cretaceo Inferiore e Superiore fu caratterizzato da un cambiamento in sedimentazione, con apporti carbonatici-silicoclastici intercalati da torbiditi arenacee (Cretaceo Superiore-Paleocene). Il passaggio tra il contesto geodinamico estensivo a quello compressivo con conseguente progressiva chiusura del bacino oceanico iniziò nel tardo Cretacico fino all'Eocene iniziale. La compressione risultò in una convergenza con formazione di una subduzione intra-oceanica con vergenza verso est del settore occidentale (Fig. 11c).

Figura 11: Fasi geodinamiche dell'apertura dell'oceano Ligure-Piemontese dal (a) Triassico al (b) Giurassico Medio-Superiore e (c) Cretaceo Inferiore. Questo stadio evolutivo indica l'inizio di una fase compressiva con formazione di una subduzione intra-oceanica. Paleo-localizzazione delle unità ofiolitiche delle Alpi Occidentali (WAO), Liguridi Interne (IL) e Liguridi Esterne (EL) (modificato dopo Garuti *et al.*, 2008).

6.2 Stratigrafia e giacitura dei corpi mineralizzati

Il deposito a solfuri massivi in questione nella sequenza ofiolitica, è indicato in letteratura come deposito VMS Cyprus-type, a basso tenore in piombo e moderato tenore in oro (Fig. 12) Dal punto di vista metallogenico, la predominante associazione è composta da ferro, rame e zinco in rocce mafiche ed

ultramafiche e differisce dai VMS di retro-arco vulcanico, intra-oceanici ed intra-continentali. Tuttavia, la sequenza ofiolitica stessa, di cui l'esempio è raffigurato in figura 13, non può essere riconciliata rispetto la sequenza ideale di crosta oceanica.

A tal proposito, dal punto di vista geologico, un complesso mafico a dicchi e zona cumulitica di transizione è assente. Il complesso mafico gabbrico invece, intrude la lherzolite mantellica con impronta geochimica distintiva di ambiente petrologico sub-continentale. Il complesso costituito da basalti "a cuscino" e anche i sedimenti pelagici, giacciono localmente a diretto contatto con il basamento del mantello.

Figura 12: (a) Valori medi di piombo, argento, oro, zinco e rame, normalizzati rispetti al mantello primitivo per i depositi VMS dell'Appennino Settentrionale (linea nera) comparati con altre tipologie di depositi VMS; (b) diagramma ternario per i depositi VMS dell'Appennino Settentrionale con indicazione del campo di appartenenza per la tipologia Cyprus-type (Garuti *et alii*, 2008).

Figura 13: (a) Confronto tra sequenza ideale e (b) alcune sequenze delle Liguridi Esterne. (1) serpentinite; (2) cumuliti maficheultramafiche; (3) gabbro; (4) complesso a dicchi mafici; (5) basalti "a cuscino"; (6) selce; (7) breccia ofiolitica; (8) calcare a Calpionella; (9) Scisti a Palomini. (Garuti *et al.*, 2008).

Dal punto di vista morfologico ed in relazione alla geometria tali corpi mineralizzati si possono classificare come segue (Fig. 14):

- Tipo 1: mineralizzazioni stratiformi in brecce serpentinitiche coperte da effusioni basaltiche a tipica struttura "a cuscini";
- Tipo 2: mineralizzazioni stratiformi alla sommità di impilamenti vulcanici coperti da sedimenti pelagici;
- Tipo 3: depositi stratabound all'interno di "basalti a cuscini";
- Tipo 4a: depositi solfurei in vene idrotermali intersecanti serpentiniti, 4b) gabbri e 4c) "basalti a cuscini";
- Piccole lenti di corpi solfurei massivi in serpentiniti (in aggiunta alle quattro tipologie sopra indicate).

Figura 14: Schema stratigrafico per i depositi VMS nelle ofioliti dell'Appennino Settentrionale. (1) deposito stratiforme al contatto tra brecce serpentinitiche e basalti "a cuscino" (Monte Bardeneto, Reppia 1 e Monte Bianco 1); (2) deposito stratiforme tra sequenza vulcanica e la copertura sedimentaria (Reppia 2 e Corchia); (3) deposito stratabound dentro i basalti "a cuscino" (Libiola); (4) deposito stockwork vein (in complesso strutturale costituito da vene idrotermali) in (a) serpentinite (Vigonzano, Ferriere, Groppallo e Santa Maria); (b) gabbro (Campegli); (c) in basalti "a cuscini" (Casali, Reppia 3, Monte Bianco 2, Boccassuolo e Montecreto) (Garuti *et al.*, 2008).

6.3 Note sulla geologia locale delle aree esplorative

Come già accennato nel paragrafo precedente, le ofioliti della catena Appenninica Settentrionale denotano caratteri univoci rispetto alle ofioliti in sensu stricto di altre regioni terrestri. Alla base di tale differenza c'è l'assetto strutturale tale che le Liguridi Interne hanno una struttura a falde formate da lembi affini ad un ambiente oceanico mentre le Liguridi Esterne sono olistostromi in rapporto sedimentario diretto. Una rappresentazione schematica dei rapporti lito-stratigrafici sulla scorta di osservazioni geologiche degli affioramenti dell'Appennino Settentrionale è offerta in figura 14.

Ne consegue che le risultanze geominerarie interessano in modo preferenziale in termini basaltici, gabbri e brecce ofiolitiche generalmente monogeniche. Le serpentiniti d'altro canto, sono interessante da manifestazione mineralizzate di minore intensità, ad esempio Monte Rossola. Appare infatti, come carattere peculiare delle mineralizzazioni dell'Appennino Settentrionale dell'Emilia-Romagna, che le mineralizzazioni sono ripartite entro corpi serpentinitici sulla base di aspetti geologici che dovranno essere stabiliti. Conseguentemente, una meticolosa attività di terreno deve essere svolta per indagare aree già conosciute ma mirata ad estendere la conoscenza anche ad altre aree regionali. Ad ogni modo, passati studi geominerari convergono nell'identificare la maggior frequenza delle mineralizzazioni solfuree di pertinenza delle Liguridi Interne rispetto alle Liguridi Esterne. Questo aspetto potrebbe essere legato alla riduzione delle dimensioni delle ofioliti che gradualmente avviene dal dominio delle Liguridi Interne verso le Liguridi Esterne.

La relazione tra contatti tettonici e/o stratigrafici è un aspetto che ricorre sovente nel ritrovamento delle mineralizzazioni solfuree. Venne osservato infatti, che tutte le mineralizzazioni finora conosciute, ricorrono in prossimità o al contatto tra porzioni di sequenza ofiolitica a chimismo e petrologia differente oppure al contatto tra termini ofiolitici cristallini e la copertura sedimentaria, il cui schema rappresentativo è mostrato in figura 15, proposto da Decadia e Elter (1969). Altro carattere geologico che ha predisposto la mineralizzazione, è la tettonica regionale. Ne deriva che faglie, fratture e vene, sia entro lo stesso litotipo che attraverso litotipi differenti, hanno esercitato un ruolo primario nella frequenza distributiva e intensità delle mineralizzazioni solfuree massive. Ulteriormente, l'alterazione è un elemento che aiuta ad identificare zone con presenza di ofioliti e mineralizzazioni. I fenomeni di alterazione principali sono l'argillificazione, cloritizzazione e limonitizzazione, più o meno spinti, con interessamento parziale o totale della roccia incassante. Da aggiungere a queste alterazioni, è l'alterazione solfurea a diversi stadi di formazione del deposito che può aver favorito un arricchimento geominerario.

Figura 15: Schematizzazione dei rapporti stratigrafici tra ofioliti e copertura sedimentaria proposto da Decadia e Elter (Ardigò e Minniti, 1975).

La metallogenesi delle ofioliti del settore Appenninico Settentrionale della Liguria Orientale include manifestazione a ferro e rame, con quantità di zinco, piombo, argento ed oro ed altri elementi metallici (Fig. 16). La paragenesi di tipo primario (Fig. 17) è costituita da un'associazione a pirite, calcopirite, marcasite, sfalerite, bornite, pirrotite, magnetite, ematite, mackinawite, arsenopirite, oro e argento favorite da un interscambio idrotermale tra acque juvenili e marina che hanno determinato la formazione di tali adunamenti metalliferi. Brigo e Ferrario (1973 – 1974) identificano una persistenza paragenetica a rame, nichel, ferro e cromo nelle unità ultramafiche ed un'altra paragenesi a ferro, rame e zinco in unità diabasiche associate intimamente con le rocce sedimentarie, asserendo inoltre che tali associazioni metalliche possono rappresentare marker geochimici per la stratigrafia ofiolitica (Fig. 18).

In figura 20 invece è rappresentata la ricostruzione minero-stratigrafica proposta da Upadhyay e Strong (1973) con riferimento ai solfuri nelle unità diabasiche, collocando i corpi mineralizzati alla base delle lave "a cuscini" anziché alla sommità come discusso da altri autori. Le principali associazioni mineralogiche tra minerali metalliferi e minerali di ganga, distinti per sito geominerario e tipologia di deposito sono individuati in figura 19. In aggiunta alle specie mineralogiche riportate in figura 16 e 17, altri autori in passato identificarono la presenza di ulteriori minerali, a seguito di fasi idrotermali differenti, quali pentlandite, valleriite, ilmenite. Nella paragenesi mineralogica, pirrotite e calcopirite sono minerali che cristallizzano in fase precoce con successiva sovracrescita o sostituzione da parte di pirite e minore sfalerite e magnetite.

Figura 16: Termini litologici e relative mineralizzazioni facenti parte dei complessi ofiolitici (Rimin, 1990).

ULTRAMAFITI	-	CROMITE, MAGNETITE PIRROTINA, PIRITE, CALCOPIRITE
GABBRI	-	ILMENITE, EMATITE Calcopirite, bornite
BASALTI]	MAGNETITE, ILMENITE, EMATITE Calcopirite, pirite, blenda
BRECCE OFIOLITICHE	-	PIRITE, MAGNETITE, EMATITE, CALCOPIRITE PIRITE, CALCOPIRITE, CALCOPIRROTINA, MAGNETITE

Figura 17: Litotipi e loro paragenesi (Rimin, 1990).

Figura 18: Mineralizzazioni e rapporti stratigrafici tra ofioliti e copertura sedimentaria proposto da Brigo e Ferraio (Ardigò e Minniti, 1975).

	Ore assemblage Gangue assemba		S (wt%)	Cu Zn (wt%) (ppm)		Pb (ppm)	Au (ppb)	Ag (ppb)	Ni (ppm)	Co (ppm)	As (nnm)	U (ppm)
			(((())	(PP)	(PP~)	(PP~)	(PP)	(PP)	(PP)	(PP)
Type 1) Stratiforn	n deposits in serpentinite bre	eccia covered by pillow la	iva									
Monte Bardeneto	Py-Po-Cp-(Sph)-Au-(Chr)	Qz-Cal-Sid-Chl-Serp	18.3	1.6	413	1.3	689	700	533	532	36	2.66
Monte Bianco 1	Py-Cp-Sph	Qz-Alb-Chl	24.7	0.7	92	71	159	3200	62	125	50	
Reppia 1	Py-Po-Cp-Au-(Chr)	Qz-Cal-Sid-Chl-Serp	17.1	2.85	341		287	833	693	2275	5.5	1.1
Type 2) Stratiform	n deposits in basalt breccia c	overed by pelagic sedim	ents									
Reppia 2	Py-Cp-Po-Sph-Au	Qz-Cal-Sid-Chl	19.8	0.93	88		792	1063	129	347	63	
Corchia	Py-Cp-(Sph)-Au-U	Qz-Cal-Sid-Chl	20.2	4.68	1329	53	1703	7726	1372	3240	147	3
	Sph-Py-(Gn-Fr)	Qz-Cal-Sid-Chl	19.1	0.36	21850	221	47	105597	96	1360	51	
Type 3) Stratabou	unnd deposits in pillow basal	t										
Libiola	Py-Cp-Sph	Qz-Cal-Chl	19.1	2.48	2595	6.75	321	5046	42	307	25	5.52
Type 4a) Stockwo	rk veins in serpentinite											
Ferriere	Py-Po-Cp-(Chr)	Qz-Cal-Sid	9.96	8.69	632		80	5300	511	401	7.4	2.1
Vigonzano	Py-Cp-Po-(Chr)	Qz-Chl-Serp	15.9	1.21	187	1.88	38	4328	381	312	2.26	
Type 4b) Stockwo	rk veins in gabbro											
Campegli	Py-Cp-Sph	Qz-Alb-Chl	4.6	2.96	1143		21	7800	37	47	1.8	
Type 4c) Stockwo	rk veins in basalt and basalt	breccia										
Boccassuolo	Pv-Cp-Sph-(Po-Gn)	Oz-Cal-Ep-Chl-Ti	5.31	1.92	16151	21	12	4232	30	72	28	
Montecreto	Pv-Cp-Sph-(Chr)	Oz-Cal-Chl	4.73	0.39	117	4.08	7	400	277	47	4.02	
Casali-Monte	-)											
Loreto	Pv-Cp-Sph	Oz-Alb-Chl	1.71	1.61	378			700	50	26	1.9	
Reppia 3	Cp-Py	Qz-Chl	2.32	2.19	127	,	9	1000	25	54	1.5	
	Pv-Cp	Oz-Chl	19.5	19.8	1110)	141	4200	48	507	10	
Monte Bianco 2	Py-(Cp-Sph)	Qz-Cal-Sid-Chl-Serp	0.75	0.58	38		5		24	61	1.7	1.3

Figura 19: Indicazione associativa di mineralizzazione e ganga tipiche nei depositi VMS dell'Appennino Settentrionale, per sito geominerario (Garuti *et alii*, 2008).

Figura 20: Schema delle mineralizzazioni nelle unità diabasiche proposto da Upadhyay e Strong. (a) mineralizzazioni massicce e stockwork derivate da attività vulcanica sottomarina; (b) dettaglio di (a); (c) dettaglio di (a) a seguito di attività tettonica con formazione di faglie e mobilizzazione di elementi chimici in fluidi (modificato dopo Ardigò e Minniti, 1975).

6.4 I principali caratteri geominerari dei siti individuati per la ricerca esplorativa

In questo paragrafo verranno brevemente decritti i caratteri geominerari principali dei siti individuati per l'attività esplorativa preliminare. I caratteri geominerari salienti, selettivamente individuati, sono stati estratti dal materiale bibliografico attualmente in possesso. Ovviamente, lo scopo della ricerca sarà quello di ampliare la conoscenza geologica e mineralogica dei siti attraverso una nuova attività di campagna che prevederà mappatura, campionatura e indagine geochimica.

6.4.1 Corchia

Questo sito che consiste in tre cantieri principali più altri minori è localizzato nella parte meridionale del Permesso di Ricerca "Corchia", e si trovano a sud-ovest dell'abitato di Berceto. Il corpo geominerario di Corchia è l'unico di Tipo 2 all'interno delle Liguridi Esterne. La sequenza ofiolitica ospitante la mineralizzazione consiste in serpentiniti e basalti "a cuscini" a loro volta incassate in mélange sedimentario composto da calcari a calpionella e scisti a palombini. Il contatto tra serpentiniti e basalti indica in genere la presenza di un sovrascorrimento che posiziona le unità mantelliche serpentinizzate sopra le unità vulcaniche effusive.

La mineralizzazione a solfuri è generalmente massiva al contatto con le unità sedimentarie e grada in un corpo mineralizzato di tipo stockwork che si dirama all'interno dell'unità basaltica. Lo strato mineralizzato al Cantiere Speranza (Fig. 21), fu descritto come ripidamente immergente verso sud, con un'inclinazione subverticale variabile da 70° a 80°. Geometricamente fu indicato uno spessore massimo di 5 m e una probabile estensione lungo direzione del piano pari a 100 m mentre 40 m in profondità.

La paragenesi mineralogica consiste in un adunamento di pirite e calcopirite con presenza anche di lenti ferrifere-zincifere con prevalenza di sfalerite e subordinata pirite. Oro e uraninite sono presenti come inclusioni microscopiche in pirite. Altre fasi mineralogiche trovate nel deposito sono acantite, freibergite, siderite, smithsonite, barite, solfati di ferro e calcio e rara idroromarchite. Al Cantiere Donnini, la massa mineralizzata consiste in una bancata di solfuri massivi con spessore variabile da 1 a 3 m. L'associazione mineralogica include pirite, calcopirite e subordinata sfalerite immersa in una ganga di quarzo, calcite, clorite e minerali di argilla. Attualmente ci sono affioramenti in parete (Fig. 22a) e in sotterraneo (Fig. 22b).

Le lenti di solfuri massivi sono irregolari in forma e variabili in dimensioni (Fig. 23a & 23b), anche fino a 100 m in estensione longitudinale. Al Cantiere Pozzo, localizzato nei pressi degli altri due cantieri menzionati nel paragrafo, le serpentiniti sono coperte da sedimenti (Fig. 24a) e le mineralizzazioni sono sostanzialmente lenti di solfuri massicci che possono raggiungere anche lo spessore di 1.5 m con estensione anche di decine di metri. L'ammasso mineralizzato è ospitato in peridotiti fortemente serpentinizzate (Fig. 24b).

Figura 22: Corpi mineralizzati a solfuri massivi: (a) Cantiere Donnini, affioramento in parete; (b) Cantiere Donnini, in sotterraneo. (1) VMS nella parte sommitale dei basalti "a cuscino"; (2) olistostromi di scisti a palombini (Garuti *et alii*, 2008).

Figura 23: Immagini dei lavori in sottosuolo al Cantiere Donnini con indicazione del contatto tra lenti di VMS e la copertura sedimentaria (Zaccarini & Garuti 2013).

Figura 24: Immagini delle lenti mineralizzate e la stratigrafia al Cantiere Pozzo (Zaccarini & Garuti 2013).

7 Cenni sull'attività produttiva storica ed il potenziale disponibile

In apertura a questo capitolo sulla geologia, fu accennata la tradizione geomineraria delle aree sopra descritte sin dai tempi dell'età del bronzo. Dati storici produttivi riguardano principalmente il "metallo rossastro" ed indicano che dalle rocce ofiolitiche dell'Appennino Settentrionale, circa 3 Mt di materiale ad un valore medio percentuale di concentrazione in rame dal 2 al 7 %. Oltre a questi numeri, si aggiungono i seguenti provenienti dal dominio delle Liguridi Esterne (settore Emilia-Romagna) con una quantità che fu stimata, in tempi più recenti (1956) di 300.000 t ad un tenore in rame del 3 %. Nel 1939 venne completamente rimosso il gossan con produzione di centinaia di tonnellate ad un tenore di rame del 3-5%. La produzione cuprifera e le prime attività minerarie vere e proprie risalgono al Medioevo, con un periodo di fioritura dal XIX Secolo in poi, a seguito della scoperta del giacimento di Montecatini. L'attività mineraria cessò negli anni '70. Ad ogni modo, miniere a cielo aperto, così come tunnel esplorativi e produttivi furono aperti in vari periodi della lunga storia produttiva di queste aree. Questi dati e numeri (Fig. 25) esprimono solo parzialmente il potenziale del sottosuolo Appenninico.

Negli anni della "Ricerca di Base" realizzata dalla società Rimin (Gruppo ENI), vennero compiuti studi geochimici e mineralogici per definire ulteriormente il potenziale geominerario delle aree indicate sopra. Anomalie in concentrazioni di alcuni elementi chimici quali rame, argento, zinco, molibdeno, ferro, cadmio e manganese vennero identificate mostrando una vocazione metallogenica delle ofioliti Appenniniche. Tali prospezioni geochimiche vennero estese ad oro e PGM (Platinum Group Metals). Indicazione delle concentrazioni in alcuni metalli in corpi ofiolitici Appenninici di interesse economico sono espresse in figura 19, mentre in figura 26 è mostrato il contenuto di alcuni metalli in ppm, ppb e wt%, per il deposito dell'area di Corchia.

Località	<u>Cu me</u>	etallo p (in to	orodotto on)	Figura	25: Dati	produttivi st	orici cupr:	iferi (Rimi	n, 1990).
Rovegno		10								
Ferriere	1.1	90		-						
Vigonzano		2000								
Corchia	÷	300								
M.te Bardeneto	1	3000								
Libiola	1 · · · ·	15000								
M.te Loreto		1700								
Piazza		300								
San Biagio		30		1						
Le Cetine		710		1						
Montecatini V.C		50000								
Monterufoli		10								
Poggio Abbù		24								
	S	<mark>Cu</mark>	<mark>Zn</mark>	Pb	Au	<mark>Ag</mark> (ppb)	Ni	Co	As	U
Mineral assemblage	(wt%)	(wt%)	(ppm)	(ppm)	(ppb)		(ppm)	(ppm)	(pp	(ppm)
									m)	
Py-Cp-(Sph)-Au-U (ore)	20.2	<mark>4.68</mark>	1329	53	1703	<mark>7726</mark>	1372	<mark>3240</mark>	147	3
Qz-Cal-Sid-Chl (gangue)										
/										
Sph-Py-(Gn-Fr) (ore)	19.1	0.36	<mark>21850</mark>	221	47	<mark>105597</mark>	96	<mark>1360</mark>	51	-
Qz-Cal-Sid-Chl (gangue)										

Figura 26: Concentrazioni in wt% per rame, in ppm per zinco, piombo, nichel, cobalto, arsenico ed uranio e in ppb per oro e argento. Abbreviazioni: pirite (Py), calcopirite (Cp), sfalerite (Sph), quarzo (Qz), calcite (Ca), siderite (Sid), clorite (ChI), galena (Gn), freibergite (Fr) (da Angelis, 2020).

I dati in possesso, rivelano una ricchezza nel sottosuolo nazionale nei corpi ofiolitici dell'Appennino Settentrionale. Considerando il momento in cui tali attività furono svolte e terminate, e le metodologie di estrazione allora conosciute, un potenziale geominerario inesplorato e conseguentemente attraente economicamente può essere ancora presente. Dall'analisi del materiale bibliografico, necessariamente, si possono quindi avanzare alcune proposte operative:

- indagine di dettaglio tra mineralizzazioni e zone interessate da strutture tettoniche e fratture, ma anche laminazioni e contatti stratigrafici. In passato molta enfasi fu data nelle ricerche alle fratture, le quali furono interpretate come prevalentemente localizzate in zone mineralizzate, quest'ultime ritenute meno resistenti alle sollecitazioni tettoniche. Inoltre le strutture hanno permesso la mobilizzazione di soluzioni cariche di ioni metallici;
- ampliamento della conoscenza geologica e geomineraria, anche attraverso approfondimenti geochimici, petrografici e giacimentologici atti a migliorare l'interpretazione e la comprensione dei depositi a solfuri massivi in sequenze ofiolitiche dell'Appennino Settentrionale. A tal proposito è da verificare il rapporto tra strutture, litotipi e corpi mineralizzati soprattutto in settori della sequenza ofiolitica dove vi sono contatti tettono-litostratigrafici in quanto i contatti sembrano essere entità geologiche preferenziali per la formazione di corpi massicci a solfuri;
- corroborare i dati di anomalie geochimiche con nuovi risultati da analisi chimiche e strumenti geostatistici per la definizione di target esplorativi mirati ad una particolare litologia, e ad uno o più metalli con valore economico;
- possibile espansione della ricerca anche per la risorsa aurifera in formazioni ofiolitiche del deposito Cyprus-type, che presentano nel caso specifico delle ofioliti Appenniniche in questione, un tenore medio in oro rispetto al deposito "ideale", ma di appetito esplorativo considerando il momentum che l'oro sta avendo, affacciandosi nel mercato globale dei metalli preziosi.

8 Programma dei lavori

L'area in oggetto è stata interessata in passato da attività di coltivazione ed esplorazione mineraria; sono quindi disponibili dati storici d'archivio, relativi alle dimensioni e alla qualità delle mineralizzazioni presenti.

Tale documentazione risulta però insufficiente, sia per il fatto che le tecniche di rilievo, risalenti ai primi anni '80 del secolo scorso, risultano obsolete, sia perché la copertura delle aree investigate, lateralmente ed in profondità, non può essere ritenuta soddisfacente.

Si ritiene quindi necessario un lavoro di rivalutazione dei dati esistenti e l'attualizzazione degli stessi, che permetta di integrarli e validarli. Tutte le attività che verranno successivamente descritte avranno carattere preliminare e utilizzeranno tecniche non invasive di analisi.

8.1 Raccolta e valutazione analitica dei lavori svolti in precedenza

Verranno condotte attività di ricerca, catalogazione e rielaborazione dei dati esistenti. Attingendo alle diverse fonti, quali Archivi di Stato o musei minerari, è possibile recuperare i dati grezzi e i risultati delle campagne di indagine, svolte durante e appena dopo la chiusura delle operazioni, nelle miniere presenti nell'area di permesso. Una volta individuato il materiale disponibile, questo verrà convertito in formato digitale, per poter essere elaborato da software specifici.

La rielaborazione e l'analisi dei dati risultanti permetterà di definire in maniera più dettagliata quali delle indagini svolte possano considerarsi attendibili, quali necessiteranno di un ulteriore validazione o approfondimento e quali invece dovranno considerarsi inattendibili o svolte con metodologie obsolete.

In particolare si presterà attenzione alla cartografia e alla mappatura geologica di dettaglio, ai risultati dei campionamenti condotti, alle interpretazioni delle anomalie derivanti dalle indagini geoelettriche e geofisiche eseguite e ai rapporti di produzione delle miniere.

8.2 Mappatura geologica di dettaglio

La mappatura delle litologie che accolgono le mineralizzazioni, combinata con la determinazione dell'assetto strutturale, è di fondamentale importanza per l'identificazione dei target esplorativi. Ragion per cui la prima indagine di terreno prevista sarà la preparazione di carte geologiche di dettaglio, alla scala 1:2000 o 1:5000 (Fig. 27a).

I rilevamenti saranno condotti con l'ausilio di strumentazione, GPS per una maggior accuratezza nel rilievo delle strutture e dei contatti stratigrafici e di uno spettrometro XRF, portatile per il riconoscimento delle mineralizzazioni o dei litotipi presenti.

Le carte geologiche così preparate diverranno la base di lavoro per la determinazione delle griglie di campionamento, per l'effettuazione di analisi geochimiche di superficie mentre le sezioni interpretative estrapolate saranno utili alla definizione delle eventuali indagini geofisiche. In presenza di gallerie o accessi in sotterraneo, dove possibile e nel caso accompagnati dagli addetti, il rilevamento verrà condotto anche sulle formazioni rocciose presenti in sottosuolo.

8.3 Campionatura geochimica di superficie

La campionatura sistematica di superficie permetterà di individuare aree in cui i tenori dei minerali target mostrano concentrazioni tali da determinare anomalie geochimiche (Fig. 27b & 27c), di interesse economico.

Le modalità con cui verranno svolte queste attività prevedono:

- La definizione delle aree ritenute potenzialmente interessanti da un punto di vista minerario, basandosi sulle mappe geologiche precedentemente stilate e focalizzandosi sulle aree dove sono visibili mineralizzazioni o dove affiorano le rocce incassanti.
- La suddivisione delle aree selezionate secondo una maglia regolare, con spaziatura dei nodi variabile, in base alla occorrenza delle mineralizzazioni e alle dimensioni dell'area da rilevare.
- La raccolta di campioni rappresentativi di dimensioni variabili dalle rocce affioranti. Dove possibile e se le condizioni lo permetteranno, i campioni verranno raccolti anche in sottosuolo, accedendo dai tunnel esistenti, accompagnati dagli addetti.
- L'analisi geochimica degli elementi principali ed in tracce dei campioni prelevati. L'analisi comprenderà un ampio spettro di elementi, in modo tale da garantire una sufficiente copertura geochimica, per l'investigazione di eventuali anomalie di elementi non considerati in precedenza;

Di seguito vengono elencati gli elementi investigati durante queste fasi preliminari di analisi: Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, Ga, K, La, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Sc, Sr, Th, Ti, Tl, U, V, W, Zn, Ag, Co, Cu.

- Realizzazione di mappe a isovalori geochimici, che evidenzino eventuali anomalie.
- Analisi mineralogiche e petrografiche su campioni selezionati per la definizione delle associazioni mineralogiche e delle loro relazioni, in particolare con l'uso di diagrammi Winchester-Floyd (Ti-Zr-Y e Zr verso Y) per definire l'affinità magmatica e l'evoluzione litologica dei basalti tholeiitici.

8.4 Stream sediment sampling

Il campionamento dei sedimenti dei corsi d'acqua (stream sediment sampling) si presta come analisi di studio nelle fasi preliminari dell'esplorazione in quanto tali sedimenti rappresentano il materiale eroso dal terreno a quote più elevate del bacino idrografico e quindi, analizzandolo, si potranno evidenziare anomalie per i minerali di interesse Fig. 27d).

Il programma di campionamento deve essere attentamente pianificato in modo da scegliere la dimensione corretta del sedimento, a seconda dei minerali che si vanno cercando. Questa tecnica richiede un impiego di strumentazione facilmente reperibile e a basso costo, essendo costituita semplicemente dalla combinazione di una batea e una serie di setacci metallici. Per ogni punto di campionamento verranno prelevati diversi kg di sedimenti dal letto del torrente, scartando in primo luogo i primi 10-20 cm di materiale, poiché contaminati da metalli altamente mobili come ferro e manganese. I pezzi di roccia particolarmente grandi verranno rimossi e il campione rimanente verrà passato attraverso setacci a maglia sempre più fine, fino a quando la dimensione desiderata delle particelle di sedimento sarà isolata e quindi riposta in sacchetti porta-campioni, per essere inviata al laboratorio per l'analisi chimica. La dimensione del campione sarà pianificata in anticipo; generalmente, l'obiettivo per la ricerca di minerali quali rame, piombo e zinco, prevede una granulometria di <0,06 mm.

I siti per il campionamento saranno selezionati in modo che non siano influenzati dalla contaminazione dalle strade a monte e/o dalla presenza di altre strutture artificiali. Un ulteriore step nella raccolta del campione consisterà nella concentrazione delle fasi metalliche tramite l'utilizzo della batea. Immergendola in acqua e agitandola si farà in modo che la parte più leggera del sedimento venga rimossa, mentre sul fondo si accumulerà la frazione più pesante contenente la fase metallica.

8.5 Prospezioni geofisiche

Per gli stili di mineralizzazione oggetto di questa richiesta le metodologie geofisiche rappresentano un efficace mezzo di esplorazione. Fra le proprietà fisiche della roccia incassante e della mineralizzazione esistono infatti contrasti tali da rendere effettiva una vasta gamma di metodi di prospezione geofisica. I corpi mineralizzati presentano tipicamente valori di densità, magnetizzazione, resistività e polarizzabilità nettamente anomali rispetto ai corpi rocciosi ospitanti.

L'applicazione di una determinata metodologia dipende comunque da vari fattori (fra gli altri: l'estensione dell'area da esplorare, il livello di dettaglio, le profondità di interesse nonché le caratteristiche geometriche, soprattutto la giacitura, e la specifica paragenesi) ed è quindi problematico, a priori, prevedere nel dettaglio le caratteristiche dei rilievi che di volta in volta saranno opportuni. Le seguenti linee programmatiche, sebbene dettagliate, sono pertanto da intendersi come preliminari e potranno subire modificazioni in corso d'opera o essere espunte dai programmi di ricerca.

Figura 27: Raccolta di immagini rappresentative dell'attività esplorativa da piano lavori; (a) elaborazione e produzione di cartografia geologica previa mappatura geologico-strutturale (fonte: Alta Zinc Ltd., Progetto "Gorno"); (b) campionamento corpi mineralizzati (fonte: Alta Zinc Ltd., Progetto "Gorno"); (c) analisi geochimica speditiva di terreno con ausilio dello strumento pXRF Olympus Innov-X Delta (fonte: Nickel laterite mineralization explored by portable XRF); (d) stream sediment sampling (fonte: Assessment of drainage basin contamination by stream and floodplain sediment geochemical surveys).

8.5.1 Magnetometria

La mappatura del campo magnetico terrestre consentirà di individuare e possibilmente modellizzare eventuali corpi mineralizzati (caratterizzati tipicamente da valori anomali di suscettibilità magnetica); in funzione della estensione delle aree/zone di interesse, potrà essere eseguita lungo linee a terra (eseguite da squadre di almeno due persone lungo linee prefissate) e/o su piattaforma aerotrasportata (su elicottero o su drone UAV). L'orientazione delle linee e la loro spaziatura verranno decise al termine dei lavori collezione e sintesi dei lavori esistenti e delle indagini geologiche preliminari.

8.5.2 Elettromagnetismo

Le mineralizzazioni a solfuri ricercate hanno tipicamente una conduttività elettrica elevata ed i corpi mineralizzati sono generalmente massivi; queste caratteristiche rendono i metodi elettromagnetici una opzione particolarmente efficiente per l'individuazione di possibili depositi in un intervallo di profondità che dalla superficie può raggiungere diverse centinaia di metri. Anche in questo caso le modalità di esecuzione dipenderanno dalla valutazione geo-giacimentologica preliminare. Queste prospezioni potranno essere effettuate sia a terra che su piattaforma eliportata.

8.5.3 Potenziale spontaneo

La presenza di corpi a solfuri può essere messa in evidenza tramite prospezioni a terra con le quali si misura l'andamento del potenziale elettrico naturale alla superficie. Questa metodica, da effettuarsi a terra,

è logisticamente poco impegnativa e, consentendo di coprire rapidamente estese aree, è un efficiente metodo di esplorazione (Fig. 28).

Potrà essere impiegata quindi sugli stessi areali rilevati con le metodiche precedenti consentendo di ulteriormente restringere le aree di interesse da investigare, eventualmente, con i metodi, più gravosi, di Polarizzazione Indotta e Resistività.

Figura 28: Acquisizione del potenziale spontaneo utilizzando due vasetti non polarizzabili (capo positivo ed un capo negativo in un circuito) in ceramica porosi contenenti solfato di rame (CuSO₄), poggianti su suolo poroso sciolto ma "compatto" per garantire aderenza suolo-vasetto; cavetti mono-polari flessibili di rame per la trasmissione del segnale; millivolmetro con DC 200 mV, risoluzione di 0.1 mV ed impedenza maggiore a 10 M Ω (fonte: Alta Zinc Ltz, prospezione geofisica Progetto "Punta Corna").

8.5.4 Polarizzazione indotta e resistività

Il contrasto di conduttività elettrica a cui si è accennato nel paragrafo dell'elettromagnetismo rappresenta un possibile obiettivo per le prospezioni geoelettriche, mentre la presenza di mineralizzazioni disseminate (aloni di corpi massivi e/o depositi loro stesse) può essere riconosciuta tramite la Polarizzazione Indotta. Le prospezioni di RHO/IP, necessariamente effettuate a terra, sono, a parità di superficie/volume esplorato, economicamente e logisticamente più gravose delle metodiche descritte precedentemente e la loro esecuzione è quindi generalmente ristretta ad aree ben definite e prioritizzate in funzione della sintesi tra geologia, magnetometria, elettromagnetismo e geochimica. La modellizzazione che può essere effettuata tramite i metodi geoelettrici è particolarmente robusta e consente, tipicamente, di generare target per eventuali programmi di sondaggi esplorativi (Fig. 29).

8.6 Studio con metodologie di Remote Sensing delle alterazioni nell'intorno delle aree mineralizzate

Questa tipologia di analisi si basa sullo studio dell'alterazione idrotermale associata ai depositi in esame, mediante analisi e confronto della risposta spettrale a diverse scale di osservazione, e la produzione di rappresentazioni tematiche indicative della distribuzione spaziale e le relazioni geometriche della stessa con la mineralizzazione. Il metodo è attualmente utilizzato, tramite la consociata Strategic Minerals Italia ed

in collaborazione con l'Università di Napoli, per l'analisi della distribuzione delle mineralizzazioni cobaltifere presenti nel Permesso di Ricerca "Punta Corna", in provincia di Torino.

Il piano di campionamento verrà opportunamente definito in seguito a rilevamento geologico di superficie, al fine di definire le caratteristiche geologiche e i target spettrali da investigare nell'area oggetto di studio. La strategia di campionamento si basa sul prelievo sistematico e regolare dei campioni, in modo che la distribuzione spaziale delle risposte spettrali sia il più rappresentativa possibile.

I campioni verranno sottoposti ad analisi spettroscopiche di riflettanza, che permettono di misurare la variazione in intensità con la lunghezza d'onda negli intervalli VNIR e SWIR dello spettro elettromagnetico (350-2500 nm) e definire la "firma spettrale", unica e diagnostica, per ciascun materiale geologico. Seguirà, poi, la validazione dello studio effettuando analisi mineralogico-geochimiche degli stessi.

Figura 29: Prospezione geoelettrica (polarizzazione indotta e resistività) con metodologia polo-dipolo: (a) trasmettitore alla base Tx per invio segnale elettrico; (b) ricevitore in posizione mobile lungo linee di acquisizione a passo "Tx-ricevitore-picchetti" costante; (c & d) stendimento di cavetti di rame per trasferimento-registrazione del segnale geoelettrico (fonte: Alta Zinc Ltd., prospezione geoelettrica Progetto "Gorno").

Lo studio dell'area mediante metodi di telerilevamento verrà effettuato utilizzando immagini satellitari iperspettrali della missione PRISMA (PRecursore IperSpettrale della Missione Applicativa), fondata e gestita dall'Agenzia Spaziale Italiana (ASI). PRISMA è un sistema di osservazione della Terra all'avanguardia e dal profilo interamente nazionale. Infatti, il satellite è dotato di una strumentazione elettro-ottica (iperspettrale e pancromatica) ad altissima risoluzione spettrale, riconosciuta come tra le più potenti al mondo e che rappresenta un'eccellenza derivata dalle competenze scientifica e industriale italiane. Ogni immagine satellitare viene fornita completa di tutte le 240 bande nell'intervallo infrarosso (da 400 nm a 2505 nm) dello spettro elettromagnetico. L'elaborazione della stessa permette di distinguere e classificare

a 2505 nm) dello spettro elettromagnetico. L'elaborazione della stessa permette di distinguere e classificare i materiali geologici presenti in superficie mediante lo studio della loro "firma spettrale" (Fig.30).

Figura 30: Schema metodico e concettuale della tecnica remote sensing iperspettrale adottato nella missione PRISMA (fonte: Agenzia Spaziale Italiana).

9 Previsione di spesa

Previsione di spesa periodo 2021-2023								
Attività	Spesa							
Raccolta e valutazione analitica dei lavori svolti in precedenza	5,000.0€							
Mappatura geologica di dettaglio	10,000.0€							
Campionatura geochimica di superficie	10,000.0€							
Stream sediment sampling	10,000.0€							
Prospezioni geofisiche	60,000.0€							
Studio con metodologie di Remote Sensing delle alterazioni nell'intorno delle aree	6 000 0 f							
mineralizzate	0,000.0 €							
Analisi chimiche	25,000.0€							
Consulenze	20,000.0€							
Voli elicottero	10,000.0€							
Report ed eleborati	15,000.0€							
Spese previste studi ambientali e monitoraggi	15,000.0€							
Oneri di sicurezza	10,000.0€							
Opere previste da studi ambientali e opere di mitigazione	7,000.0€							
Imprevisti	25,000.0€							
Spese varie	15,000.0€							
TOTALE	243,000.0 €							

Tabella 2: Previsione di spesa per programma esplorativo.

10 Cronoprogramma

Il programma dei lavori previsti per il triennio 2021-2023 si svilupperà nell'anno come da cronogramma in tabella 3 ed i dettagliati riferimenti alle attività rimandano al paragrafo 7.

Le attività sono state distribuite su un arco temporale di quattro trimestri. Inizialmente Energia Minerals Italia si occuperà del reperimento dei dati storici sulla scorta dei quali verrà effettuata una scrupolosa analisi per il targeting delle aree più vocate geologicamente ad ospitare la mineralizzazione. Tale attività si metterà in atto durante il primo ed il secondo trimestre e tendenzialmente proseguirà anche negli anni successivi al 2021 sempre all'interno della finestra temporale sopra citata.

Acquisiti il permesso ed i dati storici, fatta l'analisi di cui sopra, si darà effetto alle attività che rientrano nel terzo trimestre, riguardanti il rilievo geologico-strutturale e le attività che si svolgeranno a tavolino propedeutiche per accedere alla fase successiva di investigazione del sottosuolo per mezzo di prospezioni geofisiche opportunamente individuate sulla base del giudizio tecnico dei dati di terreno interpretati. Contestualmente, si compirà il campionamento dei greti fluviali (stream sediment sampling) e dei corpi litologici mineralizzati e non, per definizione di paragenesi metalliche, alterazioni e microstrutture da inserire nel quadro deformativo strutturale a larga scala.

Il quarto trimestre sarà dedicato all'acquisizione dei dati geofisici ed in contemporanea si genererà un registro di catalogazione dei campioni con assegnazione di un codice identificativo univoco ad ognuno di essi. I campioni verranno successivamente inviati ai laboratori preposti per analisi le geochimiche. Altra attività rientrante in questo trimeste è la stesura dei rapporti condensando tutti i dati raccolti, preparati, elaborati ed interpretati e la pianificazione ed esecuzione delle medesime attività annuali fino al completamento del cronoprogramma in questione.

		202	21			202	22		2023			
Attività	01-gen	01-apr	01-lug	01-ott	01-gen	01-apr	01-lug	01-ott	01-gen	01-apr	01-lug	01-ott
Ricerca bibliografica e digitalizzazione dei dati storici												
Rilevamento geologico-strutturale												
Elaborazione, analisi ed interpretazione dati geologico-strutturali												
Stream sediment sampling e campionatura												
Prospezioni geofisiche												
Spedizione campioni e analisi chimiche												
Stesura rapporti												

Tabella 3: Cronoprogramma dei lavori nel triennio 2021-2023.

11 Bibliografia

De Angelis, M., (2020), *Mineral Initiative in Italy – VMS deposits – Follow-up report on detailed description and ranking of mineral deposits*. Energia Minerals S.r.l.

Conti, P., Cornamusini, G. & Carmignani, L., (2020), *An outline of the geology of the Northern Apennines (Italy), with geological map at 1:250,000 scale.* Italian Journal of Geoscience, Vol. 139, No. 2 (2020), pp. 149-194.

Zaccarini, F. & Garuti, G., (2013), *High and low temperature gold mineralization in the Fe-Cu-Zn sulfide deposits of Corchia ophiolite, Northern Italian Apennine.* Minerals 2013

Garuti, G., Bartoli, O., Scacchetti, M. & Zaccarini, F., (2008), *Geological setting and structural styles of Volcanic Massive Sulfide deposit in the northern Apennines (Italy): evidence for seafloor and sub-seafloor hydrothermal activity in unconventional ophiolites of the Mesozoic Tethys*. Boletín de la Sociedad Geológica Mexicana, vol. 60, num. 1, 2008, pp. 121-145.

Progetto CARG (2002), Note Illustrative della Carta Geologica D'Italia alla scala 1:50.000, Foglio 216 Borgo Val di Taro. Regione Emilia-Romagna Servizio Geologico, Sismico e dei Suoli

Rimin (1990), Relazione: Mineralizzazioni nelle ofioliti. Rimin Gruppo ENI.

Rimin (1990), *Relazione conclusive sui lavori svolti: Mineralizzazioni nelle ofioliti. Ministero dell'Industria del Commercio e dell'Artigianato, Direzione Generale delle Miniere. Ricerca Mineraria di Base.* Rimin Gruppo ENI.

Basso, R., della Giusta, A. & Merlanti, F., (1978), *Studi su alcuni giacimenti a solfuri nelle ofioliti della Liguria Orientale.* Rendiconti Società Italiana di Mineralogia e Petrologia, 34 (2), 1978: pp. 629-638

Ardigò, G, (1975), *Esame comparato di alcune mineralizzazioni cuprifere nei diabasi della Liguria orientale*. Rimin S.p.A. Direzione Ricerche Italia.

Ardigò, G. & Minniti, M., (1974), Pietre verdi: esame preliminare di alcune zone mineralizzate nelle ofioliti della Liguria Orientale.

Minniti, M. & Sola, L., (1974), Pietre verdi – Situazione attuale e possibilità di sviluppo delle ricerche.