REGIONE CALABRIA

Provincia di Catanzaro

Committente:

PLT engineering s.r.l. via Dismano 1280 47522 Cesena (FC) P.IVA/C.F. 05857900723

Titolo del Progetto:

PARCO EOLICO "SELLIA MARINA"

Documento: ID PROGETTO: **PESM** G PROGETTO DEFINITIVO DISCIPLINA: CAPITOLO: N° Documento: Elaborato: PESM-G-01 Relazione generale FORMATO: SCALA: Nome file: PESM-G-01_Relazione generale Progettazione: Ing. Saverio Pagliuso Ing. Mario Francesco Perri Ing. Giorgio Salatino Ing. Claudio Coscarella Data Revisione Descrizione Revisione Redatto Controllato Approvato Rev: 01/2021 PRIMA EMISSIONE **GEMSA** GEMSA PLT 00

Indice

1 INTRODUZIONE	1
1.1 Presentazione del progetto	1
1.2. Normativa di riferimento	2
2 CONSIDERAZIONI GENERALI SULLE ENERGIE RINNOVABILI	8
2.1. Introduzione	8
2.2 Le energie rinnovabili nella comunità europea	9
2.3 Il Piano energetico Nazionale	11
2.4 L'energia eolica in italia	12
2.5 Emissioni	12
3 IL QUADRO PROGRAMMATICO DI RIFERIMENTO	14
3.1 Pianificazione di settore	14
Programmazione energetica a livello europeo	14
Strategia Energetica Nazionale (SEN)	22
3.2 Strumenti normativi per le autorizzazioni	23
L'attuazione della Direttiva 2001/77/CE: il D.Lgs. 387/03	23
4 DESCRIZIONE DEL PARCO EOLICO	28
4.1 Descrizione generale	28
4.2 Aerogeneratori	30
4.3 Sottostazione	31
4.4 Cavidotto	31
4.5 Idraulica	32

4.5 Criteri generali adottati per la disposizione e collocazione degli aerogenerato	ori 32
4.5.1 Distanze fra aerogeneratori	33
4.5.2 Utilizzo viabilità esistente e minimizzazione degli interventi	34
4.5.3 Rischio archeologico	34
4.5.4 Centri urbani e fabbricati	35
4.5.5 Distanze aree "sensibili"	35
4.5.6 Analisi geologiche, idrogeologiche e geomorfologiche	36
4.5.7 Impatto sul paesaggio	37
4.5.8 Interventi di mitigazione	42
5 OPERE CIVILI CONNESSE	43
5.1 Accessi	43
5.2 – Interventi previsti da progetto e loro caratteristiche tecniche	65
6 IMPIANTI ELETTRICI	66
7 ESECUZIONE DEI LAVORI	67
7.1 Cronoprogramma dei lavori	68
8 SICUREZZA	69
9 DISMISSIONE	69
10 ANALISI SULLE RICADUTE SOCIALI E OCCUPAZIONALI	70
11 CONCLUSIONI	71

1 INTRODUZIONE

1.1 Presentazione del progetto

Oggetto del presente documento è la descrizione delle principali caratteristiche del parco eolico che sarà realizzato sul territorio dei Comuni di Sellia Marina (CZ), Soveria Simeri (CZ) e relativa Sottostazione Elettrica prevista nel Comune di Belcastro (CZ).

La società proponente è PLT Engineering S.r.l., interessata alla promozione, realizzazione e sfruttamento di impianti per la produzione di energia elettrica da fonte eolica mediante aerogeneratori.

A seguito di approfonditi studi sul territorio della provincia di Catanzaro, di indagini realizzate in sito attraverso misurazioni anemologiche e con le serie storiche delle condizioni del vento esistenti in zona, PLT Engineering S.r.l. ha individuato nell'area, un sito di interesse eolico. Lo sfruttamento di questo parco eolico, come sistema produttivo di energia elettrica, permetterà di ridurre la domanda da altre fonti energetiche, tra cui quelle di tipo non rinnovabile, e di perseguire, nello stesso tempo, l'acquisizione di tecnologie energetiche avanzate.

La potenza totale massima da installare sarà di 84 MW con una produzione stimata di 220.920,00 MWh/anno.

PLT Engineering S.r.l. garantisce che le macchine da installare, la cui descrizione è riportata nei paragrafi successivi, saranno della più avanzata tecnologia esistente attualmente, corredate da certificazioni rilasciate da organismi internazionali.

Nel presente progetto definitivo si propone una soluzione per la captazione di energia eolica mediante l'utilizzazione di tecnologie avanzate che consentono di ottimizzare i processi di produzione. L'energia eolica captata è direttamente utilizzabile nel processo di trasformazione in energia elettrica mediante meccanismi ad altissimo rendimento.

L'aspetto più significativo in termini di sostenibilità è la forte riduzione di impatto ambientale rispetto ai metodi tradizionali di produzione energetica. L'energia eolica, infatti, è inesauribile e la sua utilizzazione è indipendente dagli effetti di mercato poiché

l'attuazione di questa infrastruttura offre l'approvvigionamento in forma ottimale di una delle risorse naturali proprie del territorio calabrese, quale è il vento.

Tale proposta progettuale di utilizzo dell'energia eolica in Calabria, offrirà benefici diretti sulla struttura produttiva della zona, producendo introiti per canoni di cessione di terreni, concessioni edilizie, assunzione di personale oltre che interessanti introiti. L'energia generata in questo parco sarà consegnata all'interno della Stazione Terna "Belcastro".

Il tempo previsto per l'esecuzione del progetto sarà di circa 367 mesi a partire dalla data di inizio lavori da avviarsi successivamente al rilascio dell'autorizzazione unica e al conseguimento di tutti gli eventuali permessi necessari.

Tutte le caratteristiche costruttive e le specifiche dell'infrastruttura verranno dettagliatamente descritte nei paragrafi successivi.

1.2. Normativa di riferimento

Per la redazione del presente progetto definitivo si è fatto riferimento, tra l'altro, alla seguente normativa:

A. Energie rinnovabili

D.P.R. 24 maggio 1988, n.203 - "Attuazione delle direttive CEE nn. 80/779, 82/884 e 85/203 concernenti norma in materia di qualità dell'aria, relativamente a specifici agenti inquinanti, e di inquinamento prodotto dagli impianti industriali, ai sensi dell'art. 15 della L. 16 aprile 1987, n. 183"

Legge 9 gennaio 1991, n.9 - "Norme per l'attuazione del Piano energetico nazionale: aspetti istituzionali, centrali idroelettriche ed elettrodotti, idrocarburi e geotermia, autoproduzione e disposizioni fiscali";

Legge 9 gennaio 1991, n.10 - "Norme per l'attuazione del Piano energetico nazionale in materia di uso razionale dell'energia, di risparmio energetico e di sviluppo delle fonti rinnovabili di energia";

Decreto legislativo 16 marzo 1999, n. 79 - "Attuazione della direttiva 96/92/CE recante norme comuni per il mercato interno dell'energia elettrica".

Decreto legislativo 29 dicembre 2003, n.387, - "Attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità";

Decreto ministeriale 10 settembre 2010 – "Linee guida per il procedimento di cui all'art. 12 del decreto legislativo 29 dicembre 2003, n.387 per l'autorizzazione alla costruzione e all'esercizio di impianti di produzione di elettricità da fonti rinnovabili nonché linee guida tecniche per gli impianti stessi";

Decreto legislativo 3 marzo 2011, n.28 – "Attuazione della direttiva 2009/28/CE sulla promozione dell'uso dell'energia da fonti rinnovabili, recante modifica e successiva abrogazione delle direttive 2001/77/CE";

Legge Regionale (Calabria) 29 dicembre 2008, n. 42 – "Misure in materia di energia elettrica da fonti energetiche rinnovabili";

Legge Regionale (Calabria) 29 dicembre 2010, n. 34 – Provvedimento generale recante norme di tipo ordinamentale e procedurale (Collegato alla manovra di finanza regionale per l'anno 2011). Articolo 3, comma 4, della legge regionale n. 8/2002.

Delibera di Giunta Regionale n. 81 del 13/03/2012 - Impianti di produzione di energia da fonti rinnovabili di potenza elettrica fino a 1 MW. Recepimento dell'art. 6, comma 9, del D.Lgs. 3/3/2011 n. 28 «Attuazione della direttiva 2009/28/CE sulla promozione dell'uso dell'energia da fonti rinnovabili, recante modifica e successiva abrogazione delle direttive 2001/77/CE e 2003/30/CE».

Deliberazione di Consiglio Regionale n. 134 del 01/08/2016 - Quadro Territoriale Regionale Paesaggistico - QTRP

Legge regionale n. 38 del 16 luglio 2018: "Modifiche e integrazioni alla legge regionale 24 settembre 2012, n. 25 (Regolazione dell'uso dell'energia da fonti rinnovabili)". La legge effettua modifiche e integrazioni alla L.R. 25/2012, per quanto riguarda la conferenza di servizi e per i procedimenti autorizzativi degli impianti alimentati da fonti rinnovabili e cogenerativi.

B. Normativa di riferimento generale

DPCM 08/06/01 n°327 - "Testo unico delle disposizioni legislative e regolamentari in materia di Pubblica Utilità".

Legge 24/07/90 n° 241, - "Norme sul procedimento amministrativo in materia di conferenza dei servizi".

D.Lgs 22/01/04 n° 42 - "Codice dei Beni Ambientali e del Paesaggio".

DPCM 12/12/05 - "Verifica Compatibilità Paesaggistica ai sensi dell'art 146 del Codice dei Beni Ambientali e Culturali".

C. Elettrodotti, linee elettriche, sottostazione e cabine di trasformazione

Regio Decreto 11 dicembre 1933, n. 1175 - "Testo unico delle disposizioni di legge sulle acque e impianti elettrici";

D.P.R. 18 marzo 1965, n. 342 - "Norme integrative della **legge 6 dicembre 1962, n. 1643** e norme relative al coordinamento e all'esercizio delle attività elettriche esercitate da enti ed imprese diversi dall'Ente Nazionale per l'Energia Elettrica";

Legge 28 giugno 1986, n. 339 - "Nuove norme per la disciplina della costruzione e dell'esercizio di linee elettriche aeree esterne";

Decreto legislativo 31 marzo 1998, n. 112 - "Conferimento di funzioni e compiti amministrativi dello Stato alle regioni ed enti locali, in attuazione del capo I della legge 15 marzo 1997, n. 59".

Legge 22 febbraio 2001, n. 36 - "Legge quadro sulla protezione dalle esposizioni a campi elettrici, magnetici ed elettromagnetici";

D.P.C.M. del 08 luglio 2003, - "Fissazione dei limiti di esposizione, dei valori di attenzione e degli obiettivi di qualità per la protezione della popolazione dalle esposizioni ai campi elettrici e magnetici alla frequenza di rete (50 Hz) generati dagli elettrodotti";

DM 21/03/88 - "Disciplina per la costruzione delle linee elettriche aeree esterne" e successive modifiche ed integrazioni.

Circolare Ministero Ambiente e Tutela del Territorio DSA/2004/25291 del 14/11/04 in merito ai criteri per la determinazione della fascia di rispetto;

Decreto 29 maggio 2008 Ministero dell'Ambiente e della Tutela del Territorio e del Mare, "Approvazione della metodologia di calcolo per la determinazione delle fasce di rispetto per gli elettrodotti".

Norme CEI 11-17 e CEI 64-7 - Linee elettriche interrate.

CEI 7-6 - Norme per il controllo della zincatura a caldo per immersione su elementi di materiale ferroso destinati a linee e impianti elettrici.

CEI 99-2 – Impianti elettrici con tensione superiore a 1 kV in c.a Parte 1: Prescrizioni comuni - I Ed. 2011.

CEI 99-3 - Messa a terra degli impianti elettrici a tensione superiore a 1 kV in c.a. - I Ed. 2011.

CEI 11-4 - Esecuzione delle linee elettriche aeree esterne.

CEI 99-27 - Impianti di produzione, trasmissione e distribuzione pubblica di energia elettrica: Linee in cavo.

CEI 11-25 - Calcolo delle correnti di cortocircuito nelle reti trifasi a corrente alternata.

CEI 11-27 - Lavori su impianti elettrici.

CEI EN 50110-1-2 - Esercizio degli impianti elettrici.

CEI 33-2 - Condensatori di accoppiamento e divisori capacitivi.

CEI 36-12 - Caratteristiche degli isolatori portanti per interno ed esterno destinati a sistemi con tensioni nominali superiori a 1000 V.

CEI 57-2 - Bobine di sbarramento per sistemi a corrente alternata.

CEI 57-3 - Dispositivi di accoppiamento per impianti ad onde convogliate.

CEI 64-2 - Impianti elettrici in luoghi con pericolo di esplosione.

CEI 64-8 - Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua.

CEI 11-32 - Impianti di produzione di energia elettrica connessi a sistemi di III categoria.

CEI 11-32 V1 - Impianti di produzione eolica.

CEI 103-6 fascicolo 4091 Edizione agosto 1997 - Protezione delle linee di telecomunicazione dagli effetti dell'induzione elettromagnetica provocata dalle linee - elettriche vicine in caso di guasto.

CEI 11-60 - "Portata al limite termico delle linee elettriche aeree esterne", 2a Ed.

Codice di Rete TERNA.

D. Opere civili - Criteri generali

Legge 5 novembre 1971, n. 1086 - "Norme per la disciplina delle opere di conglomerato cementizio armato, normale e precompresso ed a struttura metallica";

D.M. 17 gennaio 2018 – "Aggiornamento delle "Norme tecniche per le costruzioni"

Circolare n. 7 – 21 febbraio 2019 - "Istruzioni per l'applicazione dell'aggiornamento delle norme tecniche per le costruzioni di cui al decreto ministeriale 17 gennaio 2018"

E. Zone sismiche

D.M. 17 gennaio 2018 – "Aggiornamento delle "Norme tecniche per le costruzioni"

Circolare n. 7 – 21 febbraio 2019 - "Istruzioni per l'applicazione dell'aggiornamento delle norme tecniche per le costruzioni di cui al decreto ministeriale 17 gennaio 2018"

F. Terreni e fondazioni

D.M. 17 gennaio 2018 – "Aggiornamento delle "Norme tecniche per le costruzioni"

Circolare n. 7 – 21 febbraio 2019 - "Istruzioni per l'applicazione dell'aggiornamento delle norme tecniche per le costruzioni di cui al decreto ministeriale 17 gennaio 2018"

G. Norme tecniche

Consiglio Nazionale delle Ricerche – Norme tecniche n. 78 del 28 luglio 1980 - *Norme sulle caratteristiche geometriche delle strade extraurbane*.

H. Sicurezza

DL n. 81 – 09 aprile 2008 – "Attuazione dell'articolo 1 della legge 03 agosto 2007, n.123 in materia di tutela della salute e della sicurezza nei luoghi di lavoro" e s.m.i.

2 CONSIDERAZIONI GENERALI SULLE ENERGIE RINNOVABILI

2.1. Introduzione

L'evoluzione incalzante della tecnologia negli ultimi duecento anni ed il conseguente benessere sono in stretta relazione con l'invenzione di macchine industriali alimentate con combustibili presenti in natura. Da studi effettuati, relativamente ai paesi dell'OCSE e ad alcuni paesi dell'Asia e dell'Africa, si dimostra come il consumo energetico ha un andamento di crescita del tutto paragonabile al prodotto interno lordo. Considerando pertanto la crescita dei consumi nei paesi in via di sviluppo, la loro tendenza ad allinearsi a quelli dei paesi sviluppati e l'aumento considerevole della popolazione mondiale, appare evidente la necessità di attingimento energetico da fonti energetiche rinnovabili al fine di assicurare nei prossimi anni uno sviluppo sostenibile per il pianeta.

L'incremento dell'utilizzazione delle risorse rinnovabili presenta, peraltro, i seguenti vantaggi:

- Limita il consumo dei combustibili fossili che vengono consumati a velocità infinitamente superiore a quella con la quale si sono accumulati durante i processi naturali e che pertanto sono destinati ad una progressiva rarefazione;
- Contribuisce a limitare le crisi energetiche dovute spesso al posizionamento dei giacimenti più interessanti in piccole aree geografiche non sempre stabili politicamente;
- Contribuisce sensibilmente a limitare il degrado ambientale di cui il consumo dei combustibili fossili si sta rivelando il principale responsabile;
- Limita le importazioni di energia, migliorando la bilancia dei pagamenti, evitando le esposizioni ad eventi internazionali imprevedibili e dando luogo ad una maggiore stabilità economica;
- Contribuisce ad una crescita economica dei territori, molte volte in zone depresse, nei quali sono posizionate le installazioni per la produzione di energia rinnovabile.

L'energia eolica è ormai una realtà consolidata tra le fonti rinnovabili rappresentandone una delle alternative di maggiore successo.

Le caratteristiche che hanno contribuito a questa affermazione sono: i costi relativamente contenuti, il ridotto impatto ambientale, le buone ricadute occupazionali, il livello nettamente superiore raggiunto rispetto alle altre fonti rinnovabili per maturità tecnologica, competitività e affidabilità. Si è avuto negli ultimi anni un notevole miglioramento dei rendimenti dei macchinari e, soprattutto, un costante aumento della potenza installata per ogni aerogeneratore, da poche centinaia di Watt di pochi anni fa ai 6.000 kW degli aerogeneratori attualmente realizzabili.

2.2 Le energie rinnovabili nella comunità europea

Esistono numerosi studi e programmi della Comunità Europea tendenti a favorire lo sviluppo delle energie rinnovabili.

Il Trattato di Maastricht assegnava come obiettivi dell'UE il promuovere una crescita economica durevole e non troppo dipendente dalle fluttuazioni dei prezzi dell'energia, il tutto rispettando la qualità dell'ambiente. Da parte sua il Trattato di Amsterdam incorpora il principio dello sviluppo sostenibile tra gli obiettivi della Comunità Europea.

Nella conferenza europea di Berlino (2004), la UE ha stabilito i propri ambiziosi obiettivi. Il risultato da raggiungere è quello di coprire con le fonti rinnovabili, entro il 2020, il 20 per cento del consumo totale di energia.

A livello globale, la potenza eolica cumulativa, con i 52,5 GW installati nel 2017, è arrivata a 539,3 GW. Dalle turbine eoliche il 55% della nuova potenza elettrica connessa nell'Unione europea nell'anno da poco concluso. La Cina il mercato più importante a livello mondiale, mentre in Europa il primato va alla Germania.

Nel mondo, a tutto il 2019, risultano installati oltre 651 GW di eolico (60,4 GW nel solo 2019) con una quota europea pari a 205 GW.

Total installed wind power capacity in Europe

Source: WindEurope

Tra i mercati europei, la Germania continua ad essere il paese con il maggior numero di GW installati (61), segue la Spagna con 26 GW e il Regno Unito con 24 GW.

Di seguito le capacità complessive accumulate dai diversi Stati Ue; l'Italia è al quinto posto con 11 GW installati.

70 60 Germany 50 Cumulative capacity (GW) 40 Italy 30 Spain France 13% UK 11% 20 10 0 France Belgium Spain Poland ž Netherlands Germany Italy Turkey Denmark Portugal Ireland Others Sweden Offshore 10 Onshore 54 26 14 16

Total installed wind power capacity by country

Source: WindEurope

2.3 Il Piano energetico Nazionale

24

Total

Nel 2017 è stata varata la Strategia energetica nazionale (SEN) che definisce la politica energetica italiana per i prossimi dieci anni. Il documento prevede la chiusura di tutte le centrali a carbone entro il 2025, il 28% dei consumi energetici coperti da fonti rinnovabili, di questi il 55% riguarda l'elettricità. In termini di efficienza energetica la Sen prevede una riduzione del 30% dei consumi entro il 2030. Tra gli obiettivi anche il rafforzamento della sicurezza di approvvigionamento, la riduzione dei gap di prezzo dell'energia e la promozione della mobilità pubblica e dei carburanti sostenibili. Un percorso che entro il 2050 prevede, in linea con la strategia europea, la riduzione di almeno l'80 per cento delle emissioni rispetto al 1990, per contrastare i cambiamenti climatici. In particolare, gli 8

gigawatt di potenza coperta da centrali a carbone dovranno uscire dal mix energetico nazionale entro il 2025, con cinque anni di anticipo rispetto alla prima versione la SEN che prevedeva la chiusura di tutte le centrali a carbone entro il 2030. Perché questo avvenga l'effetto nimby dovrà essere annullato, i cittadini dovranno essere consapevoli di accettare nuovi impianti a fonti rinnovabili e di ridurre i consumi. Servirà, soprattutto, la collaborazione delle amministrazioni locali che non potranno mettere alcun veto sulla realizzazione di nuovi impianti a fonti rinnovabili. Il documento fissa il 28% di rinnovabili sui consumi complessivi al 2030 rispetto al 17,5% del 2015. Nel dettaglio, si dovrà arrivare al 2030 con il 55% dei consumi elettrici di energia prodotta da rinnovabili e del 30% per i consumi termici.

2.4 L'energia eolica in italia

A livello legislativo, la **Strategia Energetica Nazionale (SEN)** fissa nuovi obiettivi di produzione di energia elettrica da fonti rinnovabili per il nostro Paese.

Nel corso del 2019 le rinnovabili hanno continuato a crescere in maniera decisa, con oltre 1.200 MW di installazioni con un +4% rispetto all'anno precedente, soprattutto grazie a fotovoltaico (737 MW) ed eolico (413 MW).

2.5 Emissioni

La produzione dell'energia elettrica mediante combustibili fossili comporta l'emissione di gas inquinanti e di gas serra. In particolare, è stato dimostrato che a partire dagli anni '50, l'inizio del boom petrolifero, gli andamenti della curva della popolazione, il consumo dei combustibili e l'aumento delle emissioni di CO₂ in atmosfera tendono a coincidere.

Il progressivo aumento del consumo energetico con la conseguente sempre crescente combustione di idrocarburi sta pertanto producendo un aumento della concentrazione di CO₂ nell'atmosfera, con un tasso di crescita stimato dello 0.3% annuo, assieme all'emissione di altri agenti inquinanti che contribuiscono in modo sinergico a produrre

effetti naturali devastanti: effetto serra, desertificazione, piogge acide, diminuzione dello spessore della fascia di ozono.

In termini numerici, per quanto afferente alla generazione di energia elettrica, di seguito sono riportati i valori delle principali emissioni prodotte dagli impianti a fonti non rinnovabili (fonte IEA):

• CO₂ (anidride carbonica): 1000 g/KWh

• SO2 (anidride solforosa): 1.4 g/KWh

NO2 (ossidi di azoto): 1.9 g/KWh

La realizzazione del Parco Eolico "Sellia Marina" si inquadra quindi perfettamente nel programma di più ampio sforzo nazionale di incrementare il ricorso a fonti energetiche alternative, contribuendo al tempo stesso ad acquisire una diversificazione del mix di approvvigionamento energetico ed a diminuire la vulnerabilità del sistema energetico nazionale. La diminuzione delle emissioni e la copertura di una parte del fabbisogno energetico da fonti rinnovabili e non inquinanti sono tanto più importanti per una Regione come la Calabria che vede nella difesa dell'ambiente dall'inquinamento il punto di forza per la futura capacità di sviluppo.

3 IL QUADRO PROGRAMMATICO DI RIFERIMENTO

Preliminarmente alla stesura del presente progetto definitivo sono stati analizzati tutti gli ambiti di programmazione e pianificazione di riferimento, a livello comunitario, nazionale, regionale nonché provinciale e comunale, verificando la coerenza degli interventi previsti con le prescrizioni e/o indicazioni contenuti nei vari strumenti di programmazione e pianificazione.

Nella fattispecie, sono stati analizzati i documenti nel seguito indicati.

3.1 Pianificazione di settore

<u>Programmazione energetica a livello europeo</u>

In ambito europeo, il settore dell'energia sta attraversando un periodo di rilevanti cambiamenti per l'effetto combinato delle politiche comunitarie d'integrazione e di apertura alla concorrenza, delle iniziative nazionali di liberalizzazione e privatizzazione dell'industria energetica e delle politiche ambientali.

L'Unione Europea considera il settore energetico un settore chiave, che raggiunge livelli di integrazione politica ed economica sempre maggiori e la cui responsabilità coinvolge ormai non solo il livello nazionale ma anche quello sovranazionale.

Per questi motivi la Commissione ha elaborato, nel 1995, il Libro Bianco per una politica energetica dell'Unione Europea che costituisce un quadro di riferimento e un punto di partenza per una politica energetica coerente e coordinata tra i diversi Stati membri. I principali obiettivi della politica energetica europea descritti nel Libro Bianco sono il raggiungimento:

- della competitività attraverso l'integrazione dei mercati nazionali dell'energia;
- della sicurezza degli approvvigionamenti;
- dello sviluppo sostenibile.

La programmazione e gli obiettivi e in materia sono stati aggiornati e rielaborati nel Libro Verde del 2006 "Una strategia europea per un'energia sostenibile, competitiva e sicura", nel quale si focalizzano sei settori prioritari:

(i) completamento dei mercati interni europei dell'energia elettrica e del gas; (ii) mercato interno di solidarietà tra stati membri (sicurezza degli approvvigionamenti); (iii) mix energetico più sostenibile, efficiente e diversificato; (iv)approccio integrato per affrontare i cambiamenti climatici; (v) promozione dell'innovazione; (vi)politica energetica esterna comune e coerente.

Vengono fissati i tre obiettivi principali da perseguire:

- Sviluppo sostenibile: (i) sviluppare fonti rinnovabili di energia competitive e altre fonti
 energetiche e vettori a basse emissioni di carbonio, in particolare combustibili
 alternativi per il trasporto, (ii) contenere la domanda di energia in Europa e (iii)
 essere all'avanguardia nell'impegno globale per arrestare i cambiamenti climatici e
 migliorare la qualità dell'aria a livello locale.
- Competitività: (i) assicurare che la liberalizzazione del mercato dell'energia offra vantaggi ai consumatori e all'intera economia e favorisca allo stesso tempo gli investimenti nella produzione di energia pulita e nell'efficienza energetica, (ii) attenuare l'impatto dei prezzi elevati dell'energia a livello internazionale sull'economia e sui cittadini dell'UE e (iii) mantenere l'Europa all'avanguardia nel settore delle tecnologie energetiche.
- Sicurezza dell'approvvigionamento: affrontare la crescente dipendenza dalle importazioni con un approccio integrato ridurre la domanda, diversificare il mix energetico dell'UE utilizzando maggiormente l'energia locale e rinnovabile competitiva e diversificando le fonti e le vie di approvvigionamento per l'energia importata, (ii) istituendo un quadro di riferimento che incoraggerà investimenti adeguati per soddisfare la crescente domanda di energia, (iii) dotando l'UE di strumenti più efficaci per affrontare le emergenze, (iv) migliorando le condizioni per

le imprese europee che tentano di accedere alle risorse globali e (v) assicurando che tutti i cittadini e le imprese abbiano accesso all'energia.

Per raggiungere questi obiettivi sono considerati strumenti essenziali la realizzazione del Mercato Interno dell'Energia, la promozione dell'utilizzo delle energie rinnovabili e, soprattutto, la realizzazione di un sistema di reti energetiche integrato e adeguato non solo all'interno dei Paesi Europei, ma anche tra l'Europa e le principali aree terze fornitrici di energia.

Come punto di partenza della propria politica energetica e della creazione del Mercato Interno dell'Energia, la Commissione Europea pone la liberalizzazione dei mercati energetici e l'introduzione della concorrenza, in particolare nel settore dell'energia elettrica e del gas. Alla base di questo processo vi è il recepimento, da parte degli Stati Membri, delle Direttive europee sul mercato interno dell'elettricità e del gas (Direttive 96/92/CE del 19 dicembre 1996 e 98/30/CE del 22 giugno 1998).

Con le successive Direttive 2003/54/CE "Norme Comuni per il Mercato Interno dell'Energia Elettrica in abrogazione della Direttiva 96/92/CE" e 2003/55/CE "Norme Comuni per il Mercato Interno del Gas Naturale in abrogazione della Direttiva 98/30/CE" del 26 giugno 2003 si è cercato di accelerare e migliorare i processi di liberalizzazione del mercato in atto, attraverso due differenti ordini di provvedimenti.

Infine, la Direttiva 2009/72/CE del 13 luglio 2009 "Norme Comuni per il Mercato Interno dell'Energia Elettrica in abrogazione della Direttiva 2003/54/CE", attualmente in vigore, stabilisce norme comuni per la generazione, la trasmissione, la distribuzione e la fornitura dell'energia elettrica, unitamente a disposizioni in materia di protezione dei consumatori al fine di migliorare e integrare i mercati competitivi dell'energia elettrica nella Comunità europea. Inoltre, definisce le norme relative all'organizzazione e al funzionamento del settore dell'energia elettrica, l'accesso aperto al mercato, i criteri e le procedure da applicarsi nei bandi di gara e nel rilascio delle autorizzazioni nonché nella gestione dei sistemi.

Sono state introdotte misure finalizzate ad avviare un processo di liberalizzazione progressiva della domanda, per consentire a tutte le imprese di beneficiare dei vantaggi della concorrenza, a prescindere dalla loro dimensione, al fine di ridurre i prezzi anche per i consumatori domestici e di giungere ad un'effettiva parità delle condizioni praticate in tutti gli stati UE in modo da creare effettivamente un unico ed integrato mercato comune.

All'interno delle direttive sono inoltre contenute una serie di misure finalizzate al miglioramento strutturale del mercato dell'energia elettrica, con una fondamentale regolazione dell'accesso dei terzi alle infrastrutture stesse, basato su tariffe pubblicate e non discriminatorie e sulla separazione fra gestori dell'infrastruttura ed erogatori dei servizi.

Un'altra priorità della politica energetica europea è lo sviluppo di un adeguato sistema di reti per l'energia, considerato uno strumento essenziale per migliorare la capacità del mercato del gas e dell'energia elettrica. Il fine è quello di svilupparsi in modo concorrenziale, per rafforzare la cooperazione con i Paesi fornitori in Europa e nell'area del Mediterraneo, per ridurre gli impatti ambientali ampliando la disponibilità di combustibili a basse emissioni di CO2, e soprattutto per raggiungere un maggior livello di sicurezza degli approvvigionamenti a livello europeo, diversificando le aree di importazione ed i fornitori.

Uno degli obiettivi fondamentali è, inoltre, il raggiungimento di uno sviluppo sostenibile, ovvero un livello quantitativo e qualitativo di sviluppo economico, e quindi di consumo energetico, compatibile con il mantenimento di un adeguato standard di qualità ambientale e di utilizzo delle risorse naturali. La politica di sviluppo sostenibile è stata progressivamente promossa attraverso una serie di iniziative internazionali, a partire dalla Conferenza di Rio de Janeiro nel 1992, finalizzata all'affermazione di uno sviluppo ecologicamente sostenibile e socialmente equilibrato e dal Protocollo siglato nel 1997 a Kyoto, ratificato dall'Italia con la Legge 120/2002, che prevede una progressiva riduzione delle emissioni in atmosfera di gas serra dei Paesi firmatari.

L'Italia ha ratificato, nell'ottobre del 2016, l'Accordo di Parigi sulla lotta al riscaldamento globale a seguito dell'intesa raggiunta il 12 dicembre 2015 alla Conferenza dell'Onu sul

clima di Parigi (Cop21). L'Accordo impegna i paesi firmatari a contenere il riscaldamento globale entro 2 gradi dal livello pre-industriale, e se possibile anche entro 1,5 gradi. I governi dovranno stabilire ed attuare obiettivi di riduzione dei gas serra prodotti dalle attività umane (anidride carbonica in primo luogo, ma anche metano e refrigeranti Hfc). Sono previste verifiche quinquennali degli impegni presi, a partire dal 2023. I paesi più ricchi dovranno aiutare finanziariamente quelli più poveri: con la legge di ratifica l'Italia ha stabilito di contribuire con 50 milioni di euro all'anno al Fondo Verde per il Clima.

Strumenti comunitari per l'incentivazione e il sostegno delle fonti rinnovabili

Direttiva 2009/28/CE del 23 aprile 2009 sulla promozione dell'uso dell'energia da fonti rinnovabili, recante modifica e successiva abrogazione delle direttive 2001/77/CE e 2003/30/CE.

La presente direttiva stabilisce un quadro comune per la promozione dell'energia da fonti rinnovabili. Fissa obiettivi nazionali obbligatori per la quota complessiva di energia da fonti rinnovabili sul consumo finale lordo di energia e per la quota di energia da fonti rinnovabili nei trasporti.

Per fare questo fissa obiettivi nazionali per gli Stati Membri per la propria quota di energia da fonti rinnovabili sul consumo finale lordo di energia nel 2020. Tali obiettivi nazionali generali obbligatori sono coerenti con l'obiettivo di una quota pari almeno al 20% di energia da fonti rinnovabili nel consumo finale lordo di energia della Comunità nel 2020.

Gli obiettivi nazionali generali per la quota di energia da fonti rinnovabili sul consumo finale di energia nel 2020 sono indicati nella tabella sotto riportata.

E' noto che l'Italia ha già raggiunto nel 2016 gli obiettivi. Attualmente la quota di consumo di energia da fonte rinnovabile si aggira intorno al 17,5%.

Ogni Stato membro adotta un piano di azione nazionale per le energie rinnovabili. I piani di azione nazionali per le energie rinnovabili fissano gli obiettivi nazionali degli Stati membri per la quota di energia da fonti rinnovabili consumata nel settore dei trasporti, dell'elettricità e del riscaldamento e raffreddamento nel 2020.

	Quota di energia da fonti rinnovabili sul consumo finale di energia, 2005 (S ₂₀₀₅)	Obiettivo per la quota di energia da fonti rinnovabili sul consumo finale di energia, 2020 (S ₂₀₂₀)		
Belgio	2,2 %	13 %		
Bulgaria	9,4 %	16 %		
Repubblica ceca	6,1 %	13 %		
Danimarca	17,0 %	30 %		
Germania	5,8 %	18 %		
Estonia	18,0 %	25 %		
Irlanda	3,1 %	16 %		
Grecia	6,9 %	18 %		
Spagna	8,7 %	20 %		
Francia	10,3 %	23 %		
Italia	5,2 %	17 %		
Cipro	2,9 %	13 %		
Lettonia	32,6 %	40 %		
Lituania	15,0 %	23 %		
Lussemburgo	0,9 %	11 %		
Ungheria	4,3 %	13 %		
Malta	0,0 %	10 %		
Paesi Bassi	2,4 %	14 %		
Austria	23,3 %	34 %		
Polonia	7,2 %	15 %		
Portogallo	20,5 %	31 %		
Romania	17,8 %	24 %		
Slovenia	16,0 %	25 %		
Repubblica slovacca	6,7 %	14 %		
Finlandia	28,5 %	38 %		
Svezia	39,8 %	49 %		
Regno Unito	1,3 %	15 %		

Tabella A dell'Allegato 1 Direttiva 2009/28/CE

Obiettivi nazionali generali per la quota di energia da fonti rinnovabili sul consumo finale di energia nel 2020

OM (97) 599 - Libro Bianco per una strategia e un piano di azione della Comunità - Energia per il futuro: le fonti energetiche rinnovabili

Il Libro Bianco, pubblicato dalla Commissione Europea nel 1997, definisce un piano d'azione per lo sviluppo delle energie rinnovabili e comporta una stretta correlazione tra le misure promosse dalla Comunità e dai singoli stati membri.

In particolare, il documento indica come obiettivo minimo da perseguire al 2010 il raddoppio del contributo percentuale delle rinnovabili al soddisfacimento del fabbisogno energetico comunitario, invitando gli Stati membri a individuare obiettivi specifici nell'ambito del quadro più generale e a elaborare strategie nazionali per perseguirli.

Con il Libro Bianco per la valorizzazione energetica delle fonti rinnovabili, approvato dal Cipe nell'Agosto 1999, il Governo raccoglie l'invito dell'Unione Europea. Nella pubblicazione si attribuisce rilevanza strategica alle fonti rinnovabili in relazione al contributo che possono fornire per la maggiore sicurezza del sistema energetico, la riduzione del relativo impatto ambientale e le opportunità in termini di tutela del territorio e di sviluppo sociale.

L'obiettivo perseguito al 2008-2012 è di incrementare l'impiego di energia da fonti rinnovabili fino a 20.3 Mtep, rispetto ai 11.7 Mtep registrati nel 1997. Nel contempo, si intende favorire la creazione di condizioni idonee ad un ancora più esteso ricorso alle rinnovabili nei decenni successivi.

OM (2006) 105 - Libro Verde - Strategia Europea per un'energia sostenibile, competitiva e sicura.

Il Libro Verde della Commissione individua sei settori chiave per una nuova strategia europea nel settore energetico improntata su criteri di sostenibilità competitività e sicurezza nell'approvvigionamento. Tra questi, quelli maggiormente attinenti al progetto proposto sono:

- l'identificazione di un mix energetico più sostenibile, efficiente, diversificato e
 generale, che provenga da fonti di energia sicure e a basse emissioni di carbonio, quali
 e fonti locali rinnovabili come l'energia eolica, la biomassa e i biocarburanti, e le
 piccole centrali idroelettriche;
- un approccio integrato per affrontare i cambiamenti climatici, utilizzando in primis la
 politica di coesione dell'UE, che individua tra gli obiettivi a sostegno dell'efficienza
 energetica lo sviluppo delle fonti alternative e rinnovabili. A questo proposito la
 Commissione invita gli Stati e le regioni, all'atto della redazione dei Quadri di
 riferimento strategici nazionali e dei programmi operativi per il periodo 2007-2013, a
 rendere effettivo l'utilizzo delle possibilità offerte dalla politica di coesione a
 sostegno della presente strategia. La Commissione presenterà anche una Road Map

dell'energia rinnovabile, considerando in particolare gli obiettivi necessari oltre il 2010 e fornendo un'attenta valutazione dell'impatto, intesa a valutare le fonti energetiche rinnovabili rispetto alle altre opzioni disponibili;

- la promozione dell'innovazione e della ricerca, dall'energia rinnovabile alle applicazioni
 industriali delle tecnologie pulite, da nuovi settori energetici quali l'idrogeno alla
 fissione nucleare avanzata, coinvolgendo le imprese private, gli Stati membri e la
 Commissione mediante partenariati tra i settori pubblico e privato o l'integrazione dei
 programmi di ricerca sull'energia, condotti a livello nazionale e comunitario;
- l'elaborazione di una politica comune esterna dell'energia, partendo dalla costruzione di nuove infrastrutture necessarie alla sicurezza degli approvvigionamenti energetici dell'UE ed arrivando a istituire una comunità paneuropea dell'energia e concludendo un vero accordo di cooperazione con la Russia, nonché un accordo internazionale sull'efficienza energetica.

Regolamento (CE) n. 663/2009 European Energy Programme for Recovery, "EEPR"

Il 13 luglio 2009 la Commissione Europea ha pubblicato il Regolamento (CE) n. 663/2009 che istituisce un programma per favorire la ripresa economica tramite la concessione di un sostegno finanziario comunitario a favore di progetti nel settore dell'energia ((European Energy Programme for Recovery, "EEPR"). Lo strumento finanziario è mirato alla ripresa economica, alla sicurezza dell'approvvigionamento energetico e alla riduzione delle emissioni di gas a effetto serra nei settori (ciascuno con un proprio sottoprogramma):

- a) delle infrastrutture per il gas e per l'energia elettrica;
- b) dell'energia eolica in mare;
- c) della cattura e dello stoccaggio del carbonio.

Nel primo sottoprogramma si pone l'obiettivo di connessione ed integrazione delle fonti di energia rinnovabile.

Strategia Energetica Nazionale (SEN)

Il documento sulla Strategia Energetica Nazionale è approvato con Decreto del Ministero dello Sviluppo Economico e del Ministero dell'Ambiente in data 10 novembre 2017.

Le priorità di azione tracciate nel documento sono:

- Migliorare la competitività del Paese, continuando a ridurre il gap di prezzo e costo dell'energia rispetto alla UE e assicurando che la transizione energetica di più lungo periodo (2030-2050) non comprometta il sistema industriale italiano ed europeo a favore di quello extra-UE;
- 2) Traguardare in modo sostenibile gli obiettivi ambientali e di de- carbonizzazione al 2030 definiti a livello europeo, con un'ottica ai futuri traguardi stabiliti nella COP21 e in piena sinergia con la Strategia Nazionale per lo Sviluppo Sostenibile;
- 3) Continuare a migliorare la sicurezza di approvvigionamento e la flessibilità e sicurezza dei sistemi e delle infrastrutture.

Nella SEN ci si propone di raggiungere questi obiettivi attraverso le seguenti priorità di azione:

- 1. Lo sviluppo delle rinnovabili;
- 2. L'efficienza energetica;
- 3. Sicurezza Energetica;
- 4. Competitività dei Mercati Energetici;
- 5. L'accelerazione nella decarbonizzazione del sistema phase out dal carbone;
- 6. Tecnologia, Ricerca e Innovazione.

In tutti gli scenari previsti nella SEN sia di base che di policy, intesi in ogni caso come supporto alle decisioni, si prevede un aumento di consumi di energia da fonte rinnovabile al 2030 mai inferiore al 24% (rispetto al 17,5% registrato del 2016).

3.2 Strumenti normativi per le autorizzazioni

<u>L'attuazione della Direttiva 2001/77/CE: il D.Lgs. 387/03.</u>

Il D.Lgs 387/2003 di attuazione della Direttiva 2001/77/CE, relativa alla promozione dell'energia elettrica prodotta da fonti energetiche rinnovabili nel mercato interno dell'elettricità, è finalizzato principalmente a:

- Promuovere un maggior contributo delle fonti energetiche rinnovabili alla produzione di elettricità nel relativo mercato italiano e comunitario;
- promuovere misure per il perseguimento degli obiettivi nazionali per quanto riguarda la produzione di energia elettrica da fonti rinnovabili;
- concorrere alla creazione delle basi per un futuro quadro comunitario in materia;
- favorire lo sviluppo di impianti di microgenerazione elettrica alimentati da fonti rinnovabili, in particolare per gli impieghi agricoli e per le aree montane.

Le disposizioni di maggior rilievo introdotte sono le seguenti:

- l'incremento annuale di 0,35 punti percentuali, a partire dal 2004 fino al 2006, per la quota di energia rinnovabile da immettere nella rete elettrica;
- l'inclusione dei rifiuti tra le fonti energetiche ammesse a beneficiare del regime riservato alle fonti rinnovabili, con indicazione di alcune categorie e/o fattispecie di rifiuti non ammessi al rilascio dei certificati verdi;
- nuove modalità per il riconoscimento dell'esenzione dall'obbligo dei Certificati Verdi per l'energia elettrica rinnovabile importata;
- la razionalizzazione e la semplificazione delle procedure autorizzative per la costruzione degli impianti alimentati da fonti rinnovabili, considerati di pubblica utilità ed indifferibili ed urgenti;
- l'introduzione delle centrali ibride che producono energia elettrica utilizzando sia fonti non rinnovabili sia fonti rinnovabili, ivi inclusi gli impianti di co-combustione (che producono energia elettrica mediante combustione contemporanea di fonti non rinnovabili e di fonti rinnovabili), come impianti a cui riconoscere l'incentivazione

con i certificati verdi, esclusivamente per la quota di energia imputabile alla fonte rinnovabile.

Il Decreto Legislativo 387/2003 ha, inoltre, introdotto il rilascio della garanzia d'origine (GO) dell'energia prodotta da fonti rinnovabili quale strumento di promozione dell'energia verde mediante il quale i produttori possono offrire ulteriori opzioni ai clienti attenti alle tematiche ambientali.

<u>D.M. 10 settembre 2010 (Ministero dello Sviluppo Economico - Linee quida per l'autorizzazione degli impianti alimentati da fonti rinnovabili)</u>

Definisce le regole per la trasparenza amministrativa dell'iter di autorizzazione nell'accesso al mercato dell'energia; regolamenta l'autorizzazione delle infrastrutture connesse e, in articolare, delle reti elettriche; determina i criteri e le modalità di inserimento degli impianti nel paesaggio e sul territorio, con particolare riguardo agli impianti eolici (Allegato 4 - Impianti eolici: elementi per il corretto inserimento degli impianti nel paesaggio).

La parte IV delle Linee guida nazionali delinea i criteri generali per il corretto inserimento degli impianti a fonti rinnovabili nel territorio e nel paesaggio. Vengono prese in esame sia le caratteristiche positive (requisiti non obbligatori) che le linee di indirizzo, secondo le quali le Regioni dovranno valutare i siti non idonei agli impianti.

Requisiti favorevoli (parte IV, punto16)

Sono a favore della valutazione positiva dei progetti le seguenti caratteristiche:

- buona progettazione degli impianti, comprovata con l'adesione del progettista ai sistemi di gestione della qualità (ISO 9000) e ai sistemi di gestione ambientale (ISO 14000 e/o EMAS);
- valorizzazione dei potenziali energetici delle diverse risorse rinnovabili presenti nel territorio;

- il ricorso a criteri progettuali volti ad ottenere il minor consumo possibile del territorio, sfruttando al meglio le risorse energetiche disponibili;
- il riutilizzo di aree già degradate da attività antropiche pregresse o in atto, tra cui siti industriali, cave, discariche, siti contaminati (cosiddetti brownfield). Soprattutto se ciò consente la minimizzazione di occupazione di territori non coperti da superfici artificiali (cosiddetti greenfield), anche rispetto alle nuove infrastrutture funzionali all'impianto mediante lo sfruttamento di infrastrutture esistenti e, dove necessari, la bonifica e il ripristino ambientale dei suoli e/o delle acque sotterranee;
- progettazione legata alle specificità dell'area in cui viene realizzato l'intervento.
 Rispetto alla localizzazione in aree agricole, assume rilevanza l'integrazione dell'impianto nel contesto delle tradizioni agroalimentari locali e del paesaggio rurale, sia per quanto riguarda la sua realizzazione che il suo esercizio;
- ricerca e sperimentazione di soluzioni progettuali e componenti tecnologici innovativi, volti ad ottenere una maggiore sostenibilità degli impianti e delle opere connesse da un punto di vista dell'armonizzazione e del migliore inserimento degli impianti stessi nel contesto storico, naturale e paesaggistico;
- coinvolgimento dei cittadini in un processo di comunicazione e informazione preliminare all'autorizzazione e realizzazione degli impianti o di formazione per personale e maestranze future.

Va sottolineato che il rispetto di tali criteri non è comunque considerato requisito necessario ai fini dell'ottenimento dell'Autorizzazione Unica.

Valutazione delle aree non idonee (parte IV, punto17)

Le Regioni possono procedere all'indicazione di aree e siti non idonei all'installazione di specifiche tipologie di impianti, secondo le modalità sotto sintetizzate e anche sulla base dei criteri indicati nell'allegato 3 delle Linee guida. L'individuazione della non idoneità dell'area è operata dalle Regioni attraverso un'apposita istruttoria, avente ad oggetto la ricognizione delle disposizioni volte alla tutela dell'ambiente, del paesaggio, del patrimonio storico ed artistico, delle tradizioni agroalimentari locali, della biodiversità e

del paesaggio rurale. Infatti, qualora la ricognizione facesse emergere obiettivi di protezione non compatibili con l'insediamento di specifiche tipologie e/o dimensioni di impianti, si determinerebbe un'elevata probabilità di esito negativo in sede di autorizzazione. Gli esiti dell'istruttoria dovranno contenere, in relazione a ciascuna area individuata come non idonea in relazione a specifiche tipologie e/o dimensioni di impianti, la descrizione delle incompatibilità riscontrate con gli obiettivi di protezione individuati nelle disposizioni esaminate.

Deliberazione del Consiglio Regionale n.315 del 14 febbraio 2005

Con la Deliberazione della Giunta Regionale, n.315, la Regione Calabria ha approvato il Piano Energetico Ambientale Regionale (P.E.A.R.);

Legge Regionale n.42 del 29 dicembre 2008

"Misure in materia diu energia elettrica da fonti energetiche rinnovabili"

D.Lqs 3 marzo 2011 n.28

Attuazione della direttiva 2009/28/CE sulla promozione dell'uso dell'energia da fonti rinnovabili, recante modifica e successiva abrogazione delle direttive 2001/77/CE e 2003/30/CE;

Definisce strumenti, meccanismi, incentivi e quadro istituzionale, finanziario e giuridico, necessari per il raggiungimento degli obiettivi fino al 2020 in materia di energia da fonti rinnovabili, in attuazione della direttiva 2009/28/CE e nel rispetto dei criteri stabiliti dalla legge 4 giugno 2010 n.96.

D.M. 5 luglio 2012 Ministero dello Sviluppo Economico

Definisce il quadro normativo e di incentivazione per le fonti rinnovabili elettriche non fotovoltaiche, introducendo nuove procedure di incentivazione e definendo le quantità di

potenza incentivabili per ogni singola fonte, al fine di poter controllare lo sviluppo del mercato.

D.Lgs. 152/2006 Testo Unico dell'Ambiente

Definisce, fra l'altro, il quadro normativo relativo alle modalità di redazione e i contenuti dello Studio di Impatto Ambientale

D.Lgs. 104/2017 Testo Unico dell'Ambiente

Recepisce la direttiva 2014/52/UE del Parlamento europeo e del Consiglio e riforma la disciplina della valutazione di impatto ambientale mediante numerose modifiche al D. lgs. 152/2006.

4 DESCRIZIONE DEL PARCO EOLICO

4.1 Descrizione generale

Il Parco Eolico "Sellia Marina" oggetto della presente relazione, prevede la realizzazione di 14 aerogeneratori con hub a 126 m, altezza massima punta pala pari a 207 metri e diametro rotore di 150 m nei territori dei Comuni di Sellia Marina (CZ) e Soveria Simeri (CZ).

La potenza unitaria massima di ciascun aerogeneratore è variabile da 3,20 MW a 6,00 MW per una potenza massima complessiva del parco pari a 84,00 MW.

Attualmente, l'uso del suolo è in gran parte agricolo, con scarsa copertura vegetazionale arborea e perciò l'area in studio si caratterizza per una rugosità media, caratteristica favorevole per lo sfruttamento eolico.

Individuazione Area Parco su base immagine satellitare

La Sottostazione Elettrica sarà realizzata nel comune di Belcastro sempre dalla stessa società PLT Engineering s.r.l.

Il relativo cavidotto di collegamento in MT sarà realizzato interrato sui territori dei comuni precedentemente citati .

PLT Engineering S.r.l., stima di ottenere da questo parco eolico, composto da n. 14 aerogeneratori, una produzione lorda di circa 220.970,00MWh/anno.

Negli elaborati inclusi nel progetto vengono descritte le opere civili e le installazioni elettromeccaniche previste per la posa degli 14 aerogeneratori.

L'area interessata dalla realizzazione del parco è accessibile dalla Strada Statale SS 106 bis con successivo accesso, da contrada Uria, a strade comunali e strade interpoderali che rendono accessibile l'intera area limitando a piccole quantità la realizzazione ex novo di brevi tratti stradali finalizzati all'accesso delle piazzole di montaggio degli aerogeneratori.

Laddove la geometria della viabilità esistente non rispetti i parametri richiesti sono stati previsti adeguamenti della sede stradale o, nei casi in cui questo non risulti possibile, la realizzazione di brevi tratti di nuova viabilità di servizio con pavimentazione in misto di cava adeguatamente rullato, al fine di minimizzare l'impatto sul territorio. Il tracciato è stato studiato ed individuato al fine di ridurre quanto più possibile i movimenti di terra ed il relativo impatto sul territorio, nonché l'interferenza con le colture esistenti.

4.2 Aerogeneratori

L'area di posizionamento degli aerogeneratori è caratterizzata da una complessità orografica media con un'altezza compresa tra 185 e 412 metri sul livello del mare.

Nella seguente tabella vengono riportate le coordinate degli aerogeneratori:

				COORDINATE GEOGRAFICHE WGS-84	
PROVINCIA	COMUNE	LOCALITA'	N° AEROGENERATORE	EST	NORD
Catanzaro	Sellia Marina	Sellia Marina	SM01	38.5558	16.4426
Catanzaro	Sellia Marina	Sellia Marina	SM02	38.5534	16.4413
Catanzaro	Sellia Marina	Sellia Marina	SM03	38.5507	16.4404
Catanzaro	Sellia Marina	Sellia Marina	SM04	38.5721	16.4126
Catanzaro	Sellia Marina	Sellia Marina	SM05	38.5651	16.4142
Catanzaro	Sellia Marina	Sellia Marina	SM06	38.5629	16.4156
Catanzaro	Sellia Marina	Sellia Marina	SM07	38.5612	16.4221
Catanzaro	Sellia Marina	Sellia Marina	SM08	38.5547	16.4232
Catanzaro	Soveria Simeri	Soveria Simeri	SM09	38.5539	16.4158
Catanzaro	Sellia Marina	Sellia Marina	SM10	38.5459	16.4242
Catanzaro	Sellia Marina	Sellia Marina	SM11	38.5435	16.4256
Catanzaro	Sellia Marina	Sellia Marina	SM12	38.5740	16.4059
Catanzaro	Soveria Simeri	Soveria Simeri	SM13	38.5443	16.4139
Catanzaro	Soveria Simeri	Soveria Simeri	SM14	38.5423	16.4201

Il parco eolico "Sellia Marina" sarà costituito da un complesso di aerogeneratori di potenza nominale variabile fra 3,2 e 6,0 MW avente un rotore tripala con un sistema di orientamento attivo.

Il rotore ha un diametro max pari a 162,0 m e utilizza il sistema di controllo attivo capace di adattare l'aerogeneratore per operare in un ampio intervallo di velocità del rotore.

Il numero di aerogeneratori previsti è 6 per una potenza totale installata massima pari a 84,00 MW. Gli aerogeneratori sono collocati nel parco, come si può evincere dagli elaborati grafici, ad un'interdistanza media non inferiore a 5 diametri del rotore (810 m).

Le pale hanno una lunghezza di 81 m e sono costituite in fibra di vetro rinforzata.

Tutte le turbine sono equipaggiate con uno speciale sistema di regolazione per cui l'angolo delle pale è costantemente regolato e orientato nella posizione ottimale a seconda delle diverse condizioni del vento. Ciò ottimizza la potenza prodotta e riduce al minimo il livello di rumore.

La torre dell'aerogeneratore è costituita da un tubolare tronco conico suddiviso in più sezioni per una altezza complessiva di 126 m mentre l'altezza massima dell'aerogeneratore (torre + pala) è di 207 m. Al fine di resistere dagli effetti causati dagli agenti atmosferici e per prevenire effetti di corrosione la struttura in acciaio della torre è verniciata per proteggerla dalla corrosione.

4.3 Sottostazione

Il progetto del parco eolico "Sellia Marina" prevede il collegamento alla Stazione elettrica 380/150 kV "Belcastro" di proprietà di Terna tramite la realizzazione di una sottostazione nel Comune di Belcastro (CZ). La connessione alla stazione Terna avverrà tramite una sottostazione di condivisione collegata con elettrodotto interrato.

4.4 Cavidotto

Il cavidotto per il trasporto dell'energia si sviluppa per circa 40,16 Km di lunghezza complessiva fra le varie connessioni dei singoli aerogeneratori fino al recapito finale presso la sottostazione da realizzare in prossimità della stazione elettrica 380/150 kV di Terna nel Comune di Belcastro (CZ). Il tracciato del cavidotto si sviluppa quasi interamente lungo strade provinciali e comunali oltre a brevi tratti posati su terreni agricoli per gli allacci agli aerogeneratori.

4.5 Idraulica

Al fine di addivenire ad un'analisi più appropriata e rispettosa dell'ambiente si è ritenuto opportuno effettuare nella proposta di variante lo studio idrologico ed idraulico del contesto territoriale ove si inseriscono le opere civili in progetto oltre al dimensionamento delle opere idrauliche a difesa delle stesse.

Le opere civili progettate in variante non interferiscono in modo alcuno con le aree censite nel Rischio Idraulico del PAI 2001 Calabria.

La progettazione idraulica del parco prevede la protezione delle sedi viarie e delle piazzole di montaggio dalle azioni delle acque meteoriche, successivamente le acque vengono trasportate all'interno delle reti di drenaggio fino al reticolo idrografico naturale.

4.5 Criteri generali adottati per la disposizione e collocazione degli aerogeneratori

L'individuazione delle aree idonee e sensibili si basa su criteri di valutazione di diversa natura quali vincolistici, paesaggistici oltre, ovviamente, a quelli di imprenditorialità e ottimizzazione della producibilità di energia da fonte eolica.

La localizzazione delle aree idonee parte dallo studio di tutti i vincoli presenti nell'area, valutando la morfologia del territorio e individuando le criticità presenti in modo da definire le aree sensibili e le aree compatibili o a compatibilità limitata per l'inserimento di impianti eolici.

Sono definite sensibili quelle aree ritenute non idonee alla localizzazione di nuovi impianti eolici quali, ad esempio: le aree vincolate, i parchi, le aree a forte pendenza, le aree a pericolosità geomorfologica, i centri urbani, le aree afferenti alla rete Natura 2000 e relative fasce di rispetto. A queste si aggiungono, su suggerimento degli strumenti programmatici locali le strade di valore paesaggistico, la costa, le aree naturali (compresi i pascoli) e numerosi altri elementi.

Per la verifica che l'impianto eolico in oggetto non ricada in aree sensibili non idonee, si è tenuto conto del QTRP della Regione Calabria che fornisce indicazioni sulle aree non idonee all'installazione di FER.

La sovrapposizione degli areali selezionati alle aree a più alta ventosità e potenzialità eolica, tratte dall'Atlante del CESI e dall'Atlante Eolico Regionale, consente di individuare i potenziali bacini eolici. Questi ultimi risultano dalla coincidenza tra aree definite compatibili e buone potenzialità eoliche.

Per la fattibilità, in termini di produzione, si rimanda alla relazione sulla producibilità, qui basta affermare che la ventosità del sito è ampiamente sufficiente ad assicurare un livello di produzione energetica più che accettabile: con una producibilità media di 2.630,00 MWh/MW installato.

4.5.1 Distanze fra aerogeneratori

Gruppi omogenei di impianti sono da preferirsi a macchine individuali disseminate sul territorio. Si considera minore, infatti, l'impatto visivo di un minor numero di turbine più grandi rispetto ad un maggior numero di turbine più piccole. Ad una scala territoriale si consiglia la concentrazione di impianti di grande taglia in aree definite bacini eolici potenziali, localizzati in prossimità delle aree produttive e dei grandi bacini estrattivi, in coincidenza con condizioni anemometriche vantaggiose.

Altro elemento da controllare rispetto al parametro densità è la distanza tra i singoli aerogeneratori e tra i differenti cluster di impianti.

Infatti, le criticità che gli impianti eolici generano sul paesaggio sono in principal modo legate alle dimensioni delle macchine, alla loro ubicazione ed alla loro disposizione. Impianti multi megawatt sono costituiti da macchine che raggiungono altezze superiori ai 150 m; spesso tali considerevoli dimensioni non sono accompagnate da una disposizione coerente con gli elementi strutturanti del paesaggio in cui si inseriscono, provocando confusione e disturbo percettivo (effetto selva).

Nel caso del presente parco eolico, l'effetto selva è evitato, dal momento che gli aerogeneratori saranno posizionati all'interno di un poligono con area pari a circa 16,52 Km², con aerogeneratori opportunamente distanziati tra loro e fuori dai vincoli ambientali che possano essere interessati in qualsiasi modo dalla costruzione e gestione dell'impianto eolico.

Per evitare l'effetto selva, la distanza minima tra gli aerogeneratori sarà pari almeno a 5 volte la dimensione del diametro del rotore nella direzione prevalente del vento e 3 volte la dimensione del diametro del rotore rispetto alla direzione ortogonale a quella prevalente del vento.

Il Parco eolico progettato rispetta queste condizioni.

4.5.2 Utilizzo viabilità esistente e minimizzazione degli interventi

Relativamente alla accessibilità al parco eolico *de quo*, per alcuni aerogeneratori l'accesso alle piazzole sarà effettuato utilizzando percorsi esistenti con locali modifiche del tracciato stradale, mentre per altri aerogeneratori oltre a sfruttare percorsi esistenti con modifiche locali verranno realizzati tratti di nuovo tracciato stradale.

L'ubicazione degli aerogeneratori rispetta inoltre la distanza minima dei 20 m dalle strade comunali così come previsto dal Codice della Strada.

Il parco eolico in progetto, rispetta ampiamente queste distanze.

4.5.3 Rischio archeologico

Nell'area interessata dal parco eolico in progetto non sono presenti siti archeologici.

I valori di Rischio ottenuti nello Studio Archeologico Preventivo corrispondono a quattro gruppi sintetizzati in "alto, medio, basso e molto basso".

I dati acquisiti hanno permesso di effettuare un'analisi complessiva e quanto più possibile esaustiva del rischio archeologico.

Nell'area sottoposta ad indagine, per un totale di circa 98 ettari indagati (comprensivi delle aree di buffer limitrofe a quelle dell'Impianto da Progetto), non è stato rinvenuto alcun resto di tipo archeologico.

Sulla base dunque delle evidenze archeologiche allo stato attuale conosciute, si stabilisce che il Rischio Archeologico Relativo per l'area deputata al posizionamento degli aerogeneratori è di valore:

- **BASSO o NON DETERMINABILE**, in quanto il Progetto ricade in aree prive di testimonianze di frequentazioni antiche oppure a distanza sufficiente da garantire un'adeguata tutela a contesti archeologici.

4.5.4 Centri urbani e fabbricati

Parimenti, per il parco eolico *de quo*, nessuna opera da realizzare interesserà aree a pericolosità geomorfologica.

Altro aspetto che potrebbe generare criticità, è legato alla prossimità degli impianti ai centri urbani che "vanno protetti" da un buffer di 500 m, sia per ragioni percettive che urbanistiche.

Tutti gli aerogeneratori sono stati posti ad una distanza minima di 500 metri dai fabbricati permanentemente abitati. A tal fine è stata eseguita una attenta ricognizione dei fabbricati esistenti tramite sopralluoghi e verifiche in campo.

4.5.5 Distanze aree "sensibili"

Un parametro importante nella progettazione di nuovi impianti deve tener conto di numerosi fattori di tipo tecnico, vincolistico e paesaggistico, al fine di rispettare le distanze dai siti sensibili per evitare forti interferenze percettive nonché il rispetto dei buffer dalle aree vincolate presenti sul territorio. Queste distanze sono spesso regolate da buffer di diversa ampiezza.

Il sito di installazione ricade all'interno di aree classificate come agricole dalle previsioni degli Strumenti Urbanistici vigenti, trattasi dunque di territori potenzialmente idonei all'installazione del parco eolico proposto.

Inoltre, dall'esame degli strumenti programmatori e della normativa specifica (compatibilità dell'intervento con eventuali aree non idonee, previste dal QRTP) riportati nei paragrafi precedenti e che sono serviti come base per l'analisi del Quadro di

Riferimento Programmatico, è emerso che: dal punto di vista vincolistico, il territorio interessato dall'interventi proposto non è incluso in alcuna delle seguenti categoria riservate ed in particolare è escluso da:

- vincolo storico-culturale (d.lgs 42/2004);
- vincolo paesaggistico (d.lgs 42/2004);
- vincolo archeologico;
- vincolo floro-faunistico (aree SIC, ZPS, ZSC) (d.p.r. n. 357/1997, integrato e modificato dal d.p.r. n. 120/2003);
- area parco e/o aree naturali protette (l. n. 394/1991).

Il sito di progetto, inoltre, non risulta:

- in corrispondenza di doline, inghiottitoi o altre forme di carsismo superficiale;
- in aree dove l'instabilità generale del pendio e le migrazioni degli alvei fluviali potrebbero compromettere l'integrità dell'opera;
- in aree esondabili o alluvionabili.

Il parco eolico in progetto, rispettate ampiamente queste distanze.

4.5.6 Analisi geologiche, idrogeologiche e geomorfologiche

Il sito che dovrà accogliere le strutture del Parco Eolico "Sellia Marina" è stato esaminato sotto l'aspetto geologico, geomorfologico, idrogeologico e geotecnico.

Il livello piezometrico della falda presente è sufficientemente profondo da non interessare il volume geotecnicamente significativo anche se in alcuni siti è possibile ritrovare al contatto tra le sabbie e le argille modesti livelli freatici a prevalente carattere stagionale.

In ogni caso la realizzazione e l'esercizio dell'impianto non potrà interferire negativamente sui circuiti dell'idrografia superficiale e sotterranea;

 il parco si trova all'esterno dei bacini idrogeologici di interesse regionale e delle loro rispettive aree di alimentazione e ricarica;

- non esistono pericolosità geologiche e sismiche che possano ostare la realizzazione del progetto;
- dai primi calcoli preliminari i terreni non danno luogo a fenomeni di liquefazione in caso di sisma;
- si ritiene indispensabile eseguire, in fase di progettazione esecutiva e dei calcoli delle strutture, una campagna di indagini ai sensi del D.M. 17/01/2018, come sopra descritta.

4.5.7 Impatto sul paesaggio

L'analisi svolta esplora, innanzitutto, i limiti visivi, la loro consistenza e forma ed in secondo luogo si sofferma su quegli elementi che seguono, distinguono e caratterizzano l'ambito stesso ed attivano l'attenzione a causa della loro forma, dimensione e significato.

Come primo passaggio è stata analizzata con estremo dettaglio la visibilità generale del parco da cui si evince che:

- l'areale da cui il parco è completamente invisibile è pari al 76,7%;
- l'areale da cui il parco è invisibile o teoricamente visibile solo in maniera estremamente limitata (1-5 aerogeneratori) è del 83,7%;
- come si evince dagli stralci della carta della visibilità di seguito allegati, il parco è
 praticamente invisibile o scarsamente visibile dai centri abitati;
- l'areale da cui il parco è potenzialmente visibile in maniera completa o quasi completa (6-11 aerogeneratori) è pari a solo il 16,3%;
- in ragione del contesto di inserimento del progetto, caratterizzato da un'orografia complessa che spesso impedisce la visione completa della sagoma verticale degli aerogeneratori (non si tiene conto della presenza di boschi a vantaggio della sicurezza), lo studio dell'intervisibilità è stato ulteriormente affinato attraverso una più dettagliata elaborazione che ha cercato di individuare non solo quali territori fossero in connessione visiva con l'estremità

al tip degli aerogeneratori in progetto ma anche di quantificare la porzione verticale dell'aerogeneratore effettivamente visibile. Da questo approfondimento, eseguito tramite la redazione di numerose sezioni topografiche, si evince che rispetto a questo 16,3% di teorica visibilità del parco si deve eliminare la quota, significativa, di aree da cui il parco in realtà, per gli ostacoli presenti, è visibile per porzioni ridotte, spesso addirittura limitate alle sole pale quantificabile in circa il 30-35%;

- la percentuale di territorio da dove il parco è visibile in maniera importante è, quindi, variabile tra 10,6 e 11,4% e sostanzialmente da aree non abitate e prive di beni tutelati;
- si può affermare che l'impatto visivo da questa porzione di territorio non è tale da modificare la percezione visiva dello skyline.

Dai centri abitati è stata sviluppata una carta della visibilità teorica di dettaglio da cui si evince che:

- Sellia: dal centro abitato il parco è sostanzialmente invisibile;
- Catanzaro: dista da 8 a 10 km dall'aerogeneratore più vicino e, quindi, una distanza importante ed è ubicato in cima ad un rilievo.

Dall'analisi cartografica e morfologica, dal rendering e dalla sezione topografica ne consegue che:

- gran parte dell'abitato, tra cui il centro storico, volgendo la visuale verso Est, non vede completamente il parco;
- teoricamente il parco è visibile solo dalla parte periferica dell'abitato che rivolge la visuale verso ovest ma come si evince dal rendering 9 e dalla sezione 9 (di seguito allegati) questa visuale è praticamente annullata dalla presenza di un'orografia e di una vegetazione che da un lato limita la visuale teorica alla sola porzione superiore dell'aerogeneratore e dall'altra rende, nella realtà, il parco

praticamente invisibile anche da quella porzione dove la carta della visibilità indica una visione teorica completa.

Da quasi tutti gli elementi paesaggistici/architettonici/storici/archeologici più interessanti il parco è invisibile ma anche dalla parte del centro abitato dove teoricamente è visibile, in realtà nella situazione concreta il parco non è visibile perché la visibilità è limitata solo:

- agli edifici ubicati all'estrema periferia del centro abitato nella porzione che si sviluppa lungo l'asse che si affaccia nella direzione del parco;
- a chi abita negli edifici di cui al punto primo che hanno finestre e/o balconi che si affacciano nella direzione del parco e non hanno altri edifici che ne impediscono la visuale, mentre risulta del tutto invisibile a chi abita in appartamenti di cui al punto primo che si affacciano dalla parte opposta o che hanno altri edifici di fronte.
- Considerato che il rendering dimostra che anche con una giornata con ottima visibilità il parco non è visibile neanche da chi abita negli edifici di cui ai punti precedenti e che in generale, quindi, la visibilità del parco dal centro abitato e soprattutto dal centro storico è nulla o estremamente limitata si può dire che la realizzazione del parco non modifica in senso significativamente negativo l'attuale percezione visiva e lo skyline di chi abita o frequenta Catanzaro.
- Magisano: dal centro abitato il parco è sostanzialmente invisibile (vedi carta della visibilità, rendering e sezione P05 di seguito allegati);
- Taverna: dal centro abitato il parco è sostanzialmente invisibile (vedi carta della visibilità);
- **Sellia Marina**: da questo centro abitato la visuale teorica del parco è estremamente limitata a 3-5 aerogeneratori ma come si vede dalla carta della visibilità, dai rendering P01 e P02 e dalle sezioni P01 e P02 di seguito allegati;
 - o dal centro storico il parco è invisibile (vedi rendering e sezione PO2);

- o la visuale reale è limitata solo all'estrema periferia E del nuovo centro abitato (vedi rendering e sezione P01);
- o la visuale reale presenta differenze notevoli in funzione dei singoli aerogeneratori, alcuni dei quali si vedono sullo sfondo (aerogeneratori 4, 5, 6, 7 e 12) ma non modificano in maniera negativa la visuale e la percezione visiva, alcuni aerogeneratori (1, 8, 9, 10, 11, 13, e 14) sono visibili solo per porzioni limitatissime del fusto (45 mt) e sono, quindi, praticamente invisibili per la presenza di un rilievo che si interpone tra il centro abitato e gli aerogeneratori (sezione PO2) e solo 2 aerogeneratori risultano ben visibili (aerogeneratori 2 e 3).

Considerato che in generale, quindi, la visibilità del parco dal centro abitato e soprattutto dal centro storico è quasi nulla mentre solo dalla periferia NE il parco è visibile sullo sfondo, risultando ben visibili solo due aerogeneratori (2 e 3) si può dire che la realizzazione del parco non modifica in senso significativamente negativo l'attuale percezione visiva e lo skyline di chi abita o frequenta Sellia Marina;

- Fossato Serralta: dal centro abitato il parco è sostanzialmente invisibile (vedi carta della visibilità);
 - Zagarise. da questo centro abitato la visuale teorica del parco è importante ma come si vede dalla carta della visibilità di dettaglio, dal rendering e dalla sezione P04 di seguito allegati, una buona visibilità reale è limitata ad un numero modesto di aerogeneratori (SM12, SM4 e SM5), poiché gli altri o non si vedono o si vedono solo le pale e la sola porzione superiore degli stessi. Se a queste evidenze ci aggiungiamo anche le considerazioni espresse per il centro abitato di Catanzaro, che ovviamente valgono anche per Zagarise, si può dire che in generale la visibilità del parco dal centro abitato e soprattutto dal centro storico è estremamente limitata, sono visibili in maniera chiara solo gli aerogeneratori 12, 4 e 5 e la realizzazione del parco non modifica

significativamente in senso negativo lo skyline e l'attuale percezione visiva di chi abita o frequenta Zagarise.

• Soveria Simeri: questo centro abitato si sviluppa lungo la stretta cresta di un rilievo per cui la visuale teorica del parco è limitata alla sola porzione della periferia del nuovo centro abitato che ha la visuale verso Est mentre tutta la porzione di abitato con la visuale ad Ovest non vede il parco (vedi rendering e sezione P3). Ma anche dalla porzione del centro abitato da cui teoricamente il parco è visibile, la visuale reale è arealmente limitata per le stesse considerazioni fatte per Catanzaro. Certamente da alcune porzioni sia pure limitate del centro abitato e della viabilità di collegamento (vedi carta della visibilità di dettaglio, rendering e sezioni P13, P14, P15 e P16) gli aerogeneratori sono ben visibili, anche per la distanza limitata, ma, vista l'ubicazione scelta, solo pochi interferiscono con lo skyline e tutto sommato non modificano in maniera sensibilmente negativa la percezione visiva.

Considerato che il parco non è visibile dal centro storico ed in generale la visibilità del parco dal centro abitato è limitata alla periferia Est del nuovo centro, si può dire che la realizzazione del parco non modifica significativamente in senso negativo l'attuale percezione visiva e lo skyline di chi abita o frequenta Saveria Simeri;

- Cropani: da questo centro il parco è visibile solo dalla periferia Ovest del nuovo centro abitato ma è invisibile dal centro storico). Inoltre anche per la parte di centro abitato che rivolge la visuale ad Ovest valgono le considerazioni fatte per Catanzaro. Considerato che il parco non è visibile dal centro storico ed in generale la visibilità del parco dal centro abitato è limitata alla periferia Ovest del nuovo centro, si può dire che la realizzazione del parco non modifica significativamente in senso negativo l'attuale percezione visiva e lo skyline di chi abita o frequenta Cropani;
- Tiriolo: dal centro abitato il parco è sostanzialmente invisibile
- Simeri Crichi: da questo centro abitato il parco è sostanzialmente invisibile

4.5.8 Interventi di mitigazione

Nella fase di realizzazione dell'opera, saranno attuate opportune misure di prevenzione e mitigazione al fine di garantire il massimo contenimento dell'impatto, attraverso:

- il contenimento, al minimo indispensabile, degli spazi destinati alle aree di cantiere e logistica, gli ingombri delle piste e strade di servizio;
- l'immediato smantellamento dei cantieri al termine dei lavori, lo sgombero e l'eliminazione dei materiali utilizzati per la realizzazione dell'opera, il ripristino dell'originario assetto vegetazionale delle aree interessate da lavori;
- al termine dei lavori la rimozione completa di qualsiasi opera, terreno o pavimentazione adoperata per le installazioni di cantiere, conferendo nel caso il materiale in discariche autorizzate.
- l'utilizzo esclusivo di mezzi di cantiere di ultima generazione che minimizzano le emissioni in atmosfera e il rumore.

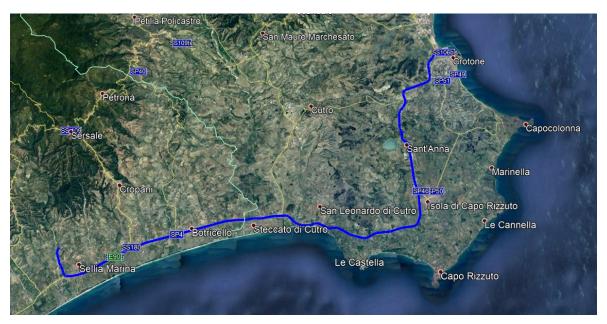
Si procederà inoltre al ripristino vegetazionale, attraverso:

- raccolta del fiorume autoctono;
- asportazione e raccolta in aree apposite del terreno vegetale;
- individuazione delle aree dove ripristinare la vegetazione autoctona;
- preparazione del terreno di fondo;
- inerbimento con la piantumazione delle specie erbacee;
- piantumazione delle specie basso arbustive;
- piantumazione delle specie alto arbustive ed arboree;
- cura e monitoraggio della vegetazione impiantata.

In tal modo, la riqualificazione ambientale sarà tesa a favorire la ripresa naturale della vegetazione, innescando i processi evolutivi e valorizzando la potenzialità del sistema naturale.

5 OPERE CIVILI CONNESSE

5.1 Accessi


L'approvvigionamento della componentistica degli aerogeneratori presso le aree di cantiere avviene con trasporto su gomma con punto di origine al porto di Crotone.

Essendo necessario movimentare trasporti eccezionali, si è effettuata attenta ricognizione per individuare i percorsi più idonei che, tra l'altro, impattino il meno possibile sul territorio attraversato, tramite la minimizzazione degli interventi di adeguamento della viabilità esistente o la nuova viabilità da realizzare.

Per comodità di trattazione ed esplicazione, l'area interessata dai suddetti trasporti è stata suddivisa in due macroaree così distinte:

 Area Esterna Parco: interessa la viabilità con origine dal porto di Crotone fino alla contrada Uria del Comune di Sellia Marina.

In tale area sono da prevedersi piccoli interventi puntuali di allargamento e bypass di alcune rotatorie.

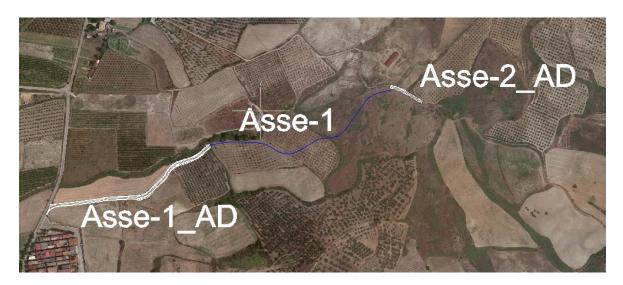
- <u>Area Interna Parco:</u> l'Area interna Parco inizia dalla località Uria e prosegue su strade comunali, interpoderali e nuova realizzazione.

In tale area sono previsti sia interventi di adeguamento della viabilità esistente che interventi di nuova viabilità nonché la realizzazione di aree, definite "piazzole", necessarie per l'assemblaggio *in situ* dei componenti degli aerogeneratori.

Nello specifico, nella progettazione della viabilità di accesso agli aerogeneratori, tenendo conto del tipo di automezzi necessari al trasporto dei componenti che necessitano di raggi di curvatura minimi di 50 metri (laddove non possibile risulta necessario l'allargamento della piattaforma stradale), livellette con pendenza massima pari al 14%, sia in salita che in discesa, (nel caso di livellette con pendenze maggiori va prevista l'additivazione di cemento nella massicciata stradale) e raccordi altimetrici di raggio minimo pari a 500 metri, si è cercato, preliminarmente, di ripercorrere i tracciati esistenti ricorrendo a piccoli e puntuali interventi di allargamento della piattaforma stradale e, laddove questo non è stato possibile, ad interventi di rigeometrizzazione dei tracciati esistenti, limitando così al minimo indispensabile gli interventi di nuova viabilità.

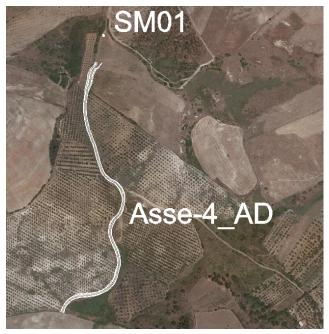
Più nel dettaglio sono stati previsti:

Interventi sulla viabilità esistente:


Per come già narrato, sulla viabilità esistente, nei casi in cui la configurazione geometrica è risultata tale da non garantire il transito dei trasporti previsti, si è proceduto ad un adeguamento planoaltimetrico del percorso interessato come di seguito meglio rappresentato.

Si premette che, per meglio rappresentare la viabilità nuova dalla esistente da adeguare, i nomi dei percorsi su viabilità da adeguare saranno seguiti dal suffisso _AD (la viabilità per cui sono previsti soli allargamenti della piattaforma stradale esistente saranno identificati con suffisso AD)

Adequamento viabilità di avvicinamento al sito interessato dagli aerogeneratori SM01, SM02, SM03 (Asse-1_AD, Asse-1, Asse-2_AD): Riguarda l'adeguamento, alle esigenze di trasporto, dell'andamento planoaltimetrico, di due tratti di viabilità esistente



denominati, rispettivamente, **Asse-1_AD** (che da via Treschene ripercorre una strada interpoderale fino ad innestarsi all'Asse-1) e **Asse-2_AD** che prevede l'adeguamento di un tratto di circa 70 metri di viabilità esistente che collega l'Asse-1 sia all'accesso vero e proprio della piazzola di montaggio dell'aerogeneratore SM03 che alla viabilità di avvicinamento agli aerogeneratori SM01 e SM02.

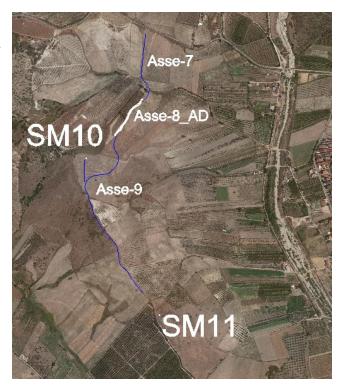
Adequamento viabilità avvicinamento all'aerogeneratore SM01 (Asse-4 AD): Riguarda l'adeguamento, alle esigenze dell'andamento trasporto, planoaltimetrico di un tracciato esistente che dall'aerogeneratore SM02 conduce verso l'aerogeneratore SM01.

Il fondo stradale di tale percorso è, attualmente, in terra battuta.

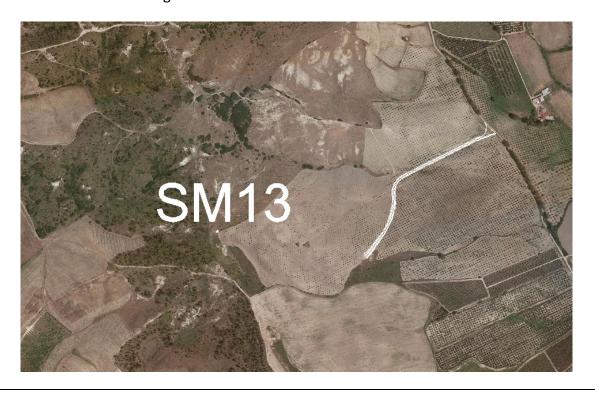
Adequamento viabilità di collegamento aerogeneratori da SM04 a SM08 e aerogeneratore SM12 (Asse-5_AD): Riguarda l'adeguamento, alle esigenze di trasporto, dell'andamento planoaltimetrico della esistente strada sterrata che

ripercorre la linea di colmo del versante collinare di Sellia Marina posto ad Est di Soveria Simeri.

Tale percorso serve da collegamento per l'accesso agli aerogeneratori posti su detto promontorio.



<u>Adequamento viabilità esistente</u> (Asse-6_AD): Trattasi di adeguamento geometrico di un sentiero già esistente in prossimità della località Uria.



Adeguamento viabilità esistente per avvicinamento agli <u>aerogeneratori SM10 e SM11</u> (Asse-8_AD): Trattasi dell'adeguamento, alle esigenze dell'andamento trasporto, planoaltimetrico di un sentiero in battuta utilizzato terra raggiungere gli aerogeneratori SM10 e SM11; tale asse è preceduto dall'asse denominato Asse-7 e succeduto dall'Asse-9.

Adequamento percorso esistente per avvicinamento all'aerogeneratore SM13 (Asse-

10_AD): Trattasi dell'adeguamento, alle esigenze di trasporto, dell'andamento planoaltimetrico di un sentiero interpoderale utile al raggiungimento dell'area di installazione dell'aerogeneratore SM13.

<u>Allargamento percorso esistente per avvicinamento all'aerogeneratore SM14</u> (Asse-11_ALL): Trattasi del solo allargamento della piattaforma della viabilità esistente che conduce verso l'aerogeneratore SM14.

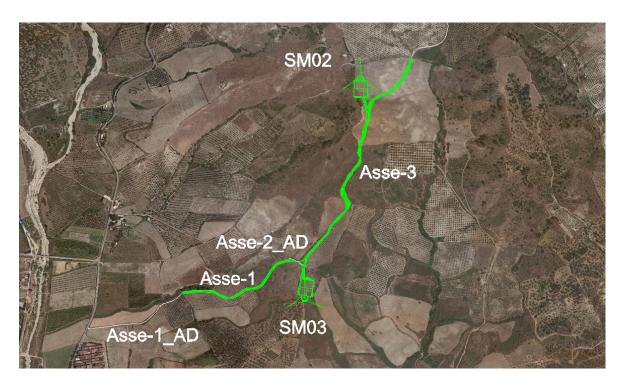
Adequamento percorso esistente per avvicinamento all'aerogeneratore SM14 (Asse-12_AD): In prosecuzione dell'Asse-11_ALL è previsto l'adeguamento planoaltimetrico di circa 150 metri di viabilità esistente per consentire l'accesso all'aerogeneratore SM14.

<u>Allargamenti puntuali su viabilità esistente</u>: Trattasi di piccoli interventi di allargamento della piattaforma esistente in corrispondenza di situazioni, in particolare curve, in cui risulta non possibile il transito. In particolare sono previsti 7 allargamenti per come da immagini di seguito riportate.

Interventi di realizzazione nuova viabilità:

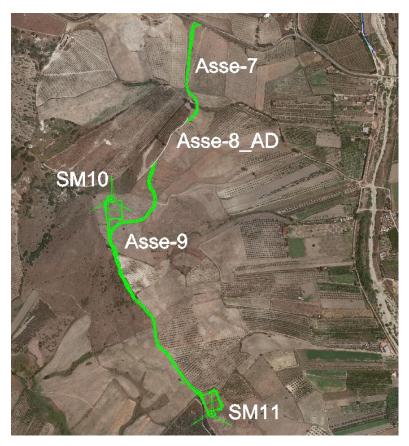
Laddove non è risultato possibile utilizzare fondi carrabili già esistenti sono stati previsti interventi di nuova viabilità, con carreggiata in misto stabilizzato della larghezza minima pari a 5 m, che dalla viabilità esistente (sia quella prevista in adeguamento che non) conduce alle piazzole di montaggio degli aerogeneratori.

Queste ultime consistono in aree di lavoro perfettamente livellate (pendenza trasversale o longitudinale massima pari a 1%) della dimensione massima di circa


60X50 metri, adiacenti all'area di imposta della fondazione dell'aerogeneratore. La pavimentazione della piazzola sarà realizzata con materiali selezionati dagli scavi e che saranno adeguatamente compattatati per assicurare la stabilità della gru. L'area così realizzata per le fasi di montaggio sarà ridimensionata, a fine lavori, in un'area di circa 20X25 metri (oltre l'area di imposta della fondazione) necessaria per interventi manutentivi.

Qui di seguito si descrivono sommariamente i percorsi delle nuove viabilità in progetto rimandando alle planimetrie particolareggiate per una più dettagliata visualizzazione.

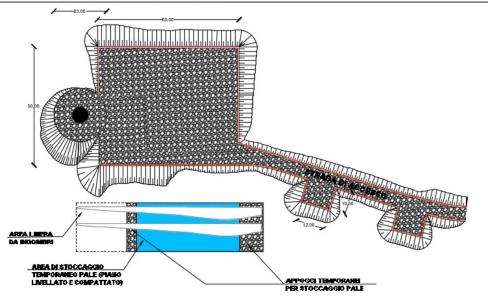
<u>Direttrice di avvicinamento e piazzole di montaggio Aerogeneratori SM02 e SM03</u>: Per l'avvicinamento alle piazzole di montaggio afferenti gli Aerogeneratori SM02 e SM03, è prevista la realizzazione di 2 nuove viabilità denominate, rispettivamente, **Asse-1** e **Asse-3**, da cui si diramano i tratti di viabilità di accesso alle dette piazzole.



Direttrice di avvicinamento e piazzole di montaggio Aerogeneratori SM10 e SM11: Per

l'avvicinamento agli SM10 Aerogeneratori SM11, è prevista la realizzazione della nuova viabilità denominata Asse-7 che, partendo da strada comunale, giunge fino al adeguamento tratto in denominato Asse-8_AD.

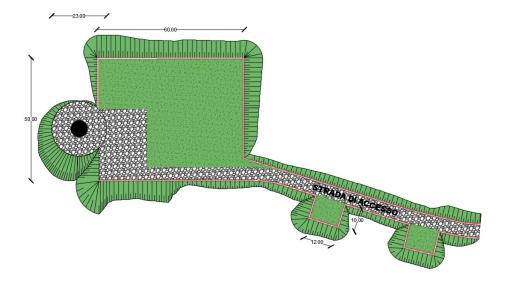
Da quest'ultimo si dirama l'Asse-9, di nuova viabilità, che arriva in prossimità delle piazzole di montaggio dei citati aerogeneratori.


Piazzole di montaggio:

Queste ultime consistono in aree di lavoro perfettamente livellate (pendenza trasversale o longitudinale massima pari a 1%) della dimensione massima di circa 60X50 metri, adiacenti all'area di imposta della fondazione dell'aerogeneratore. La pavimentazione della piazzola sarà realizzata con materiali selezionati dagli scavi e che saranno adeguatamente compattatati per assicurare la stabilità della gru. L'area così realizzata per le fasi di montaggio sarà ridimensionata, a fine lavori, in un'area di circa 28X25 metri (oltre l'area di imposta della fondazione) necessaria per interventi manutentivi.

In linea generale, l'accesso alla piazzola verrà sfruttato anche per il montaggio a terra della gru tralicciata, necessaria per l'installazione in quota dei vari componenti degli aerogeneratori, prima del tiro in alto.

Per poter consentire il montaggio della suddetta gru, nonché agevolare il tiro in alto, è previsto l'utilizzo di 2 gru ausiliarie per cui, nel caso in cui non sa possibile reperire spazi idonei per il posizionamento di tali gru, si procederà alla realizzazione di piazzoline di supporto della dimensione media di 10X12 metri, che saranno completamente rinverdite a seguito dell'esecuzione dei lavori.


Planimetria tipo piazzola aerogeneratori in fase di esecuzione lavori

Planimetria tipo piazzola aerogeneratori in fase di esercizio

Di seguito si procederà a descrivere le caratteristiche generali delle singole piazzole.

<u>Piazzola SM01</u>: Tale piazzola avrà una superficie di 60X50 metri e sarà realizzata in parte in scavo, con quota di imposta media pari a 183,70 metri s.l.m., richiedendo un approfondimento massimo di circa 8,50 metri rispetto all'attuale quota del terreno lungo il lato monte. Lungo il lato valle della piazzola sarà necessario prevedere una conformazione in rilevato (altezza media di circa 1,00 m sul p.c. nel punto più alto), al fine di raccordare il piano di progetto con la quota naturale del terreno.

La richiesta conformazione del terreno determinerà lo scavo di circa 10.800 m³ di materiale, al netto dello scavo delle strutture di fondazione dell'aerogeneratore (pari a circa 1.580 m³) ed il posizionamento in rilevato di 130 m³ di materiale oltre a quello impiegato per il rinterro della fondazione.

Piazzola SM02: Tale piazzola avrà una superficie di 60X50 metri e sarà realizzata nella zona colmare di un rilevato collinare, con quota di imposta media pari a 176,70 metri s.l.m., richiedendo un approfondimento massimo, lungo il lato Sud, di circa 3,70 metri rispetto all'attuale quota del terreno. Lungo i rimanenti 3 lati sarà necessario prevedere una conformazione rilevato in (altezza massima di circa 4,00 m sul p.c. nel punto più alto), al fine di raccordare il piano di progetto con la quota naturale del terreno.

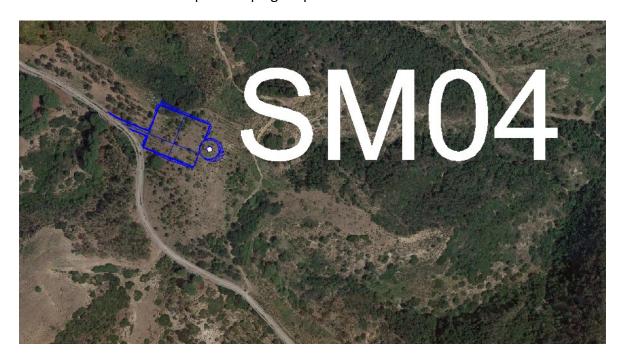
L'accesso avverrà dall'Asse-3, sopradescritto, tramite un piccolo tratto (Lunghezza 62,00 metri circa) di viabilità di nuova realizzazione.

La richiesta conformazione del terreno (sistema piazzola + piccolo tratto in accesso) determinerà lo scavo di circa 4.600 m³ di materiale, al netto dello scavo delle strutture di fondazione dell'aerogeneratore (pari a circa 1.850 m³) ed il posizionamento in rilevato di 1.150 m³ di materiale oltre a quello impiegato per il rinterro della fondazione.

<u>Piazzola SM03</u>: Tale piazzola avrà una superficie di 60X50 metri e sarà realizzata in parte in scavo, con quota di imposta media pari a 134,50 metri s.l.m., richiedendo un approfondimento massimo di circa 7,60 metri rispetto all'attuale quota del terreno. Lungo i rimanenti 3 lati sarà necessario prevedere una conformazione in rilevato (altezza massima di circa 3,60 m sul p.c. nel punto più alto), al fine di raccordare il piano di progetto con la quota naturale del terreno.

L'accesso avverrà dall'Asse-2, sopradescritto, tramite un piccolo tratto (Lunghezza 50,00 metri circa) di viabilità di nuova realizzazione.

La richiesta conformazione del terreno (sistema piazzola + piccolo tratto in accesso) determinerà lo scavo di circa 10.500 m³ di materiale, al netto dello scavo delle strutture di fondazione dell'aerogeneratore (pari a circa 2.450 m³) ed il posizionamento in rilevato di 900 m³ di materiale oltre a quello impiegato per il rinterro della fondazione.



<u>Piazzola SM04</u>: Tale piazzola avrà una superficie di 60X50 metri e sarà realizzata in parte in scavo, con quota di imposta media pari a 377,30 metri s.l.m., richiedendo un approfondimento massimo di circa 1,80 metri rispetto all'attuale quota del terreno lungo il lato a monte. Lungo il lato valle della piazzola sarà necessario prevedere una conformazione in rilevato (altezza media di circa 3,80 m sul p.c. nel punto più alto), al fine di raccordare il piano di progetto con la quota naturale del terreno.

L'accesso avverrà dall'Asse-5_AD, sopradescritto, tramite un piccolo tratto (Lunghezza 30,00 metri circa) di viabilità di nuova realizzazione.

La richiesta conformazione del terreno (sistema piazzola + piccolo tratto in accesso) determinerà lo scavo di circa 2.900 m³ di materiale, al netto dello scavo delle strutture di fondazione dell'aerogeneratore (pari a circa 1.050 m³) ed il posizionamento in rilevato di 4.800 m³ di materiale oltre a quello impiegato per il rinterro della fondazione.

<u>Piazzola SM05</u>: Tale piazzola avrà una superficie di 65X45 metri e sarà realizzata in parte in scavo, con quota di imposta media pari a 299,10 metri s.l.m., richiedendo un approfondimento massimo di circa 2,90 metri rispetto all'attuale quota del terreno lungo il lato a monte. Lungo il lato valle della piazzola sarà necessario prevedere una

conformazione in rilevato (altezza media di circa 4,50 m sul p.c. nel punto più alto), al fine di raccordare il piano di progetto con la quota naturale del terreno.

L'accesso avverrà dall'Asse-5_AD, sopradescritto, tramite un piccolo tratto (Lunghezza 25,00 metri circa) di viabilità di nuova realizzazione.

La richiesta conformazione del terreno (sistema piazzola + piccolo tratto in accesso) determinerà lo scavo di circa 4.300 m³ di materiale, al netto dello scavo delle strutture di fondazione dell'aerogeneratore (pari a circa 1.220 m³) ed il posizionamento in rilevato di 1.370 m³ di materiale oltre a quello impiegato per il rinterro della fondazione.

<u>Piazzola SM06</u>: Tale piazzola avrà una superficie di 60X50 metri e sarà realizzata in parte in scavo, con quota di imposta media pari a 269,75 metri s.l.m., richiedendo un approfondimento lungo i lati Sud, Ovest e Nord con massimo di circa 3,00 metri rispetto all'attuale quota del terreno lungo il lato a Nord. Lungo il lato Est della piazzola sarà necessario prevedere una conformazione in rilevato (altezza massima di circa 2,20 m sul p.c. nel punto più alto), al fine di raccordare il piano di progetto con la quota naturale del terreno.

L'accesso avverrà dall'Asse-5_AD, sopradescritto, tramite un piccolo tratto (Lunghezza 27,00 metri circa) di viabilità di nuova realizzazione.

La richiesta conformazione del terreno (sistema piazzola + piccolo tratto in accesso) determinerà lo scavo di circa 3.600 m³ di materiale, al netto dello scavo delle strutture di fondazione dell'aerogeneratore (pari a circa 1.740 m³) ed il posizionamento in rilevato di 760 m³ di materiale oltre a quello impiegato per il rinterro della fondazione.

<u>Piazzola SM07</u>: Tale piazzola avrà una superficie di 60X50 metri e sarà realizzata in parte in scavo, con quota di imposta media pari a 212,40 metri s.l.m., richiedendo un approfondimento lungo l'asse centrale di circa 0,70 metri rispetto all'attuale quota del terreno. Lungo i lati della piazzola sarà necessario prevedere una conformazione in rilevato (altezza massima di circa 6,00 m sul p.c. nel punto più alto), al fine di raccordare il piano di progetto con la quota naturale del terreno.

L'accesso avverrà dall'Asse-5_AD, sopradescritto, tramite un piccolo tratto (Lunghezza 55,00 metri circa) di viabilità di nuova realizzazione.

La richiesta conformazione del terreno (sistema piazzola + piccolo tratto in accesso) determinerà lo scavo di circa 1.100 m³ di materiale, al netto dello scavo delle strutture di

fondazione dell'aerogeneratore (pari a circa 1.240 m³) ed il posizionamento in rilevato di 7.100 m³ di materiale oltre a quello impiegato per il rinterro della fondazione.

<u>Piazzola SM08</u>: Tale piazzola avrà una superficie di 60X50 metri e sarà realizzata in parte in scavo, con quota di imposta media pari a 150,50 metri s.l.m., richiedendo un approfondimento massimo di circa 3,00 metri rispetto all'attuale quota del terreno lungo il lato a Nord. Lungo i rimanenti lati della piazzola sarà necessario prevedere una conformazione in rilevato (altezza massima di circa 4,00 m sul p.c. nel punto più alto), al fine di raccordare il piano di progetto con la quota naturale del terreno.

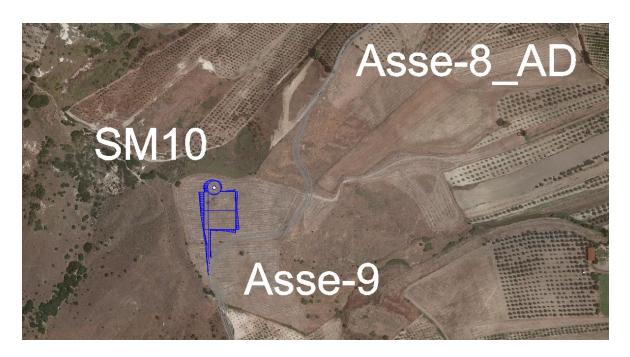
L'accesso avverrà dall'Asse-5_AD, sopradescritto, tramite un piccolo tratto (Lunghezza 45,00 metri circa) di viabilità di nuova realizzazione.

La richiesta conformazione del terreno (sistema piazzola + piccolo tratto in accesso) determinerà lo scavo di circa 4.900 m³ di materiale, al netto dello scavo delle strutture di fondazione dell'aerogeneratore (pari a circa 1.140 m³) ed il posizionamento in rilevato di 1.900 m³ di materiale oltre a quello impiegato per il rinterro della fondazione.

<u>Piazzola SM09</u>: Tale piazzola avrà una superficie di 60X50 metri e sarà realizzata in parte in scavo, con quota di imposta media pari a 166,70 metri s.l.m., richiedendo un approfondimento lungo i lati Sud, Ovest e Nord con massimo di circa 3,30 metri rispetto all'attuale quota del terreno in corrispondenza del vertice Ovest. Lungo la parte Est della piazzola sarà necessario prevedere una conformazione in rilevato (altezza massima di circa 4,80 m sul p.c. nel punto più alto), al fine di raccordare il piano di progetto con la quota naturale del terreno.

L'accesso avverrà direttamente da strada comunale tramite un piccolo tratto (Lunghezza 50,00 metri circa) di viabilità di nuova realizzazione.

La richiesta conformazione del terreno (sistema piazzola + piccolo tratto in accesso) determinerà lo scavo di circa 2.700 m³ di materiale, al netto dello scavo delle strutture di fondazione dell'aerogeneratore (pari a circa 1.600 m³) ed il posizionamento in rilevato di 2.600 m³ di materiale oltre a quello impiegato per il rinterro della fondazione.

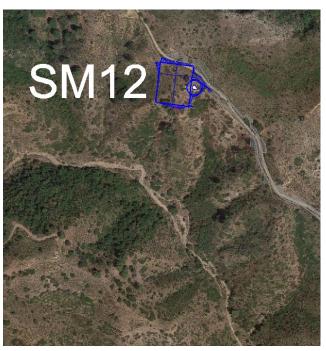


<u>Piazzola SM10</u>: Tale piazzola avrà una superficie di 60X50 metri e sarà realizzata in parte in scavo, con quota di imposta media pari a 125,30 metri s.l.m., richiedendo un approfondimento massimo di circa 4,80 metri rispetto all'attuale quota del terreno lungo il lato a Ovest. Lungo i rimanenti lati della piazzola sarà necessario prevedere una conformazione in rilevato (altezza massima di circa 3,30 m sul p.c. nel punto più alto), al fine di raccordare il piano di progetto con la quota naturale del terreno.

L'accesso avverrà dall'Asse-9, sopradescritto, tramite un piccolo tratto (Lunghezza 57,00 metri circa) di viabilità di nuova realizzazione.

La richiesta conformazione del terreno (sistema piazzola + piccolo tratto in accesso) determinerà lo scavo di circa 3.500 m³ di materiale, al netto dello scavo delle strutture di fondazione dell'aerogeneratore (pari a circa 1.300 m³) ed il posizionamento in rilevato di 1.630 m³ di materiale oltre a quello impiegato per il rinterro della fondazione.

<u>Piazzola SM11</u>: Tale piazzola avrà una superficie di 60X50 metri e sarà realizzata in parte in scavo, con quota di imposta media pari a 111,40 metri s.l.m., richiedendo un approfondimento massimo di circa 5,20 metri rispetto all'attuale quota del terreno lungo il lato a Ovest. Lungo i rimanenti lati della piazzola sarà necessario prevedere una conformazione in rilevato (altezza massima di circa 6,80 m sul p.c. nel punto più alto), al fine di raccordare il piano di progetto con la quota naturale del terreno.


L'accesso avverrà dall'Asse-9, sopradescritto, tramite un piccolo tratto (Lunghezza 60,00 metri circa) di viabilità di nuova realizzazione.

La richiesta conformazione del terreno (sistema piazzola + piccolo tratto in accesso) determinerà lo scavo di circa 4.000 m³ di materiale, al netto dello scavo delle strutture di fondazione dell'aerogeneratore (pari a circa 1.860 m³) ed il posizionamento in rilevato di 8.700 m³ di materiale oltre a quello impiegato per il rinterro della fondazione.

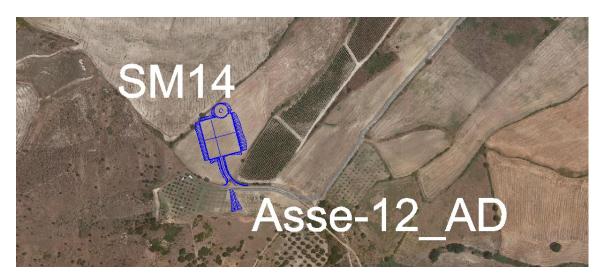
Piazzola SM12: Tale piazzola avrà una superficie di 60X50 metri e sarà realizzata in parte in scavo, con quota di imposta media pari a 403,50 metri s.l.m., richiedendo un approfondimento massimo di circa 15,90 metri rispetto all'attuale quota del terreno.

L'accesso avverrà dall'Asse-5_AD, sopradescritto, tramite un piccolo tratto (Lunghezza 60,00 metri circa) di viabilità di nuova realizzazione.

La richiesta conformazione del terreno (sistema piazzola + piccolo tratto in accesso) determinerà lo scavo di circa 19.600 m³ di materiale, al netto dello scavo delle strutture di fondazione dell'aerogeneratore (pari a circa 7.340 m³) ed il posizionamento in rilevato di 150 m³ di materiale oltre a quello impiegato per il rinterro della fondazione.

<u>Piazzola SM13</u>: Tale piazzola avrà una superficie di 60X50 metri e sarà realizzata in parte in scavo, con quota di imposta media pari a 153,30 metri s.l.m., richiedendo un approfondimento massimo di circa 9,00 metri rispetto all'attuale quota del terreno lungo il lato a Ovest. Lungo i rimanenti lati della piazzola sarà necessario prevedere una conformazione in rilevato (altezza massima di circa 6,20 m sul p.c. nel punto più alto), al fine di raccordare il piano di progetto con la quota naturale del terreno.

La richiesta conformazione del terreno determinerà lo scavo di circa 3.000 m³ di materiale, al netto dello scavo delle strutture di fondazione dell'aerogeneratore (pari a circa 2.250 m³) ed il posizionamento in rilevato di 5.900 m³ di materiale oltre a quello impiegato per il rinterro della fondazione.



<u>Piazzola SM14</u>: Tale piazzola avrà una superficie di 60X50 metri e sarà realizzata in parte in scavo, con quota di imposta media pari a 154,50 metri s.l.m., richiedendo un approfondimento massimo di circa 4,80 metri rispetto all'attuale quota del terreno lungo il lato a Ovest. Lungo il lato Est della piazzola sarà necessario prevedere una conformazione in rilevato (altezza massima di circa 7,00 m sul p.c. nel punto più alto), al fine di raccordare il piano di progetto con la quota naturale del terreno.

Per tale piazzola è prevista anche la realizzazione di un breve rilevato (lunghezza di circa 33,00 metri e larghezza di circa 4,00 metri) utile al posizionamento a terra della gru tralicciata prima del tiro in alto.

L'accesso avverrà dall'Asse-12_AD, sopradescritto, tramite un piccolo tratto (Lunghezza 52,00 metri circa) di viabilità di nuova realizzazione.

La richiesta conformazione del terreno (sistema piazzola + piccolo tratto in accesso) determinerà lo scavo di circa 7.400 m³ di materiale, al netto dello scavo delle strutture di fondazione dell'aerogeneratore (pari a circa 1.440 m³) ed il posizionamento in rilevato di 4.380 m³ di materiale oltre a quello impiegato per il rinterro della fondazione.

5.2 – Interventi previsti da progetto e loro caratteristiche tecniche

Distaccato dalla piazzola sarà realizzata la fondazione di appoggio della torre eolica. Tale fondazione sarà di geometria circolare in cemento armato di diametro pari a 23,00 ml. e spessore di 2,50 ml., appoggia su pali di fondazione anch'essi in cemento armato, di profondità compresa tra gli 8,00 ml. ed i 10,00 ml. per resistere agli sforzi di ribaltamento e scivolamento provocati dalle forze agenti sulla torre.

Come opere idrauliche e mitigazione delle acque meteoriche si procederà con la realizzazione di trincee e pozzetti necessari per la canalizzazione delle acque meteoriche. I pozzetti saranno in calcestruzzo armato con coperchi anch'essi realizzati in calcestruzzo armato il cui collocamento sarà previsto in fase esecutiva.

6 IMPIANTI ELETTRICI

Gli impianti elettrici sono costituiti da:

- Parco Eolico: costituito da n°14 aerogeneratori della potenza unitaria di 6 MW che
 convertono l'energia cinetica del vento in energia elettrica per mezzo di un
 generatore elettrico. Un trasformatore elevatore 0,690/30 kV porta la tensione al
 valore di trasmissione interno dell'impianto;
- *le linee interrate in MT a 30 kV*: convogliano la produzione elettrica degli aerogeneratori alla Stazione di Trasformazione 30/150 kV;
- la stazione di trasformazione 30/150 kV (SET): trasforma l'energia al livello di tensione della rete AT. In questa stazione vengono posizionati gli apparati di protezione e misura dell'energia prodotta;
- stallo TERNA a 150 kV (IR impianto di rete per la connessione): è il nuovo stallo di consegna a 150 kV che verrà realizzato sulla sezione a 150 kV della futura Stazione Elettrica di Trasformazione (SE) di proprietà di TERNA;
- n° 1 collegamento in cavo a 150 kV: breve tratto di cavo interrato a 150 kV
 necessario per il collegamento in antenna della SET al IR.

La rete di media tensione a 30 kV sarà composta da n° 5 circuiti con posa completamente interrata. Il tracciato planimetrico della rete è mostrato nelle tavole allegate.

Nelle tavole allegate vengono anche riportati lo schema unifilare dove con indicazione della lunghezza e della sezione corrispondente di ciascuna terna di cavo e viene descritta la modalità e le caratteristiche di posa interrata.

I cavi verranno posati con una protezione meccanica (lastra o tegolo) ed un nastro segnalatore. Su terreni pubblici e su strade pubbliche la profondità di posa dovrà essere comunque non inferiore a 1,2 m previa autorizzazione della Provincia. I cavi verranno posati in una trincea scavata a sezione obbligata. Mantenendo valide le ipotesi di temperatura e resistività del terreno, i valori di portata indicati nel precedente paragrafo vanno moltiplicati per dei coefficienti di correzione che tengono conto della profondità di

posa di progetto, del numero di cavi presenti in ciascuna trincea e della ciclicità di utilizzo dei cavi.

Dove necessario si dovrà provvedere alla posa indiretta dei cavi in tubi, condotti o cavedi. Per i condotti e i cunicoli, essendo manufatti edili resistenti non è richiesta una profondità minima di posa né una protezione meccanica supplementare. Lo stesso dicasi per i tubi 450 o 750, mentre i tubi 250 devono essere posati almeno a 0,6 m con una protezione meccanica.

In questi casi si applicheranno i seguenti coefficienti:

- lunghezza 2 15m: nessun coefficiente riduttivo,
- lunghezza 2 15 m: 0,8 m,
- Si installerà una terna per tubo che dovrà avere un diametro doppio di quello apparente della terna di cavi.

Nella stessa trincea verranno posati i cavi di energia, la fibra ottica necessaria per la comunicazione e la corda di terra.

7 ESECUZIONE DEI LAVORI

Per la realizzazione delle opere verranno allestiti dei cantieri temporanei opportunamente recintati in cui verranno individuate e preparate le aree per la collocazione dei container adibiti ad ufficio, per lo stoccaggio dei materiali nonché per il deposito temporaneo di materiale di risulta.

La realizzazione degli interventi sarà effettuata previa asportazione del manto vegetale che sarà opportunamente stoccato, conservato e riutilizzato per il successivo ripristino dello stato dei luoghi.

Gli scavi di profondità (al di sotto del piano di scotico superficiale) daranno origine a materiale di risulta che, opportunamente vagliato, potrà essere utilizzato per la realizzazione delle massicciate delle nuove strade.

La fase di installazione degli aerogeneratori, una volta realizzate le fondazioni in calcestruzzo armato, prevede il preventivo trasporto *in situ* dei componenti da

assemblare (di notevoli dimensioni per cui saranno previsti trasporti eccezionale, da qui la necessità dei previsti adeguamenti delle strade esistenti nonché di realizzazione di nuovi tratti stradali).

La sequenza di installazione prevede delle fasi consecutive una all'altra. Nello specifico:

- a) montaggio del tramo di base
- b) montaggio dei trami intermedi
- c) montaggio del tramo di sommità
- d) sollevamento e montaggio della navicella
- e) montaggio delle pale alla navicella

Per il tiro in alto dei vari componenti elencati ci si avvarrà di un'unica gru allestita in situ (da qui la necessità di prevedere delle aree di temporaneo posizionamento e assemblaggio a terra, identificata negli elaborati grafici come "Pista di Montaggio Gru").

7.1 Cronoprogramma dei lavori

Per come detto in precedenza, è previsto che la fase di realizzazione del parco eolico abbia una durata stimata in 36 mesi articolata nelle seguenti fasi:

- Allestimento di cantiere
- Accesso al Parco Adeguamento Strade esistenti
- Accesso al parco Realizzazione Strade nuove
- Realizzazione piazzole di servizio
- Realizzazione fondazioni
- Montaggio aerogeneratori
- Realizzazione SET Sottostazione Elettrica Trasformazione
- Realizzazione dell'edificio di controllo
- Realizzazione di linea elettrica sotterranea
- Interventi di mitigazione

- Smobilizzo del cantiere

La cronologia e attivazione delle suddette fasi è meglio evincibile dal cronoprogramma di seguito riportato.

8 SICUREZZA

Le operazioni di realizzazione delle opere si svolgeranno in ossequio alla normativa del Testo Unico in materia di Salute e Sicurezza dei lavoratori (Decreto Legislativo 9 aprile 2008 n. 81 Titolo IV e successive modifiche ed integrazioni).

Nella successiva fase di progettazione esecutiva il committente o un eventuale Responsabile dei lavori da lui individuato darà incarico ad un Coordinatore per la sicurezza in fase di progettazione, abilitato ai sensi della predetta normativa, per la redazione del Piano di Sicurezza e Coordinamento.

Successivamente, in fase di realizzazione dell'opera, sarà nominato un Coordinatore per l'esecuzione dei lavori, anch'esso abilitato, che vigilerà durante tutta la durata dei lavori sul rispetto da parte delle ditte appaltatrici delle norme di Legge in materia di sicurezza e delle disposizioni previste nel Piano di Sicurezza e Coordinamento.

9 DISMISSIONE

Per quanto attiene la fase di dismissione dell'impianto a fine vita utile dello stesso, è previsto il ripristino dello stato originario del sito. E' importante osservare che un ulteriore vantaggio degli impianti eolici è rappresentato dalla natura delle strutture principali che li compongono; gli aerogeneratori sono quasi esclusivamente costituiti da elementi in materiale metallico facilmente riciclabile o riutilizzabile a fine vita. Tali opere presentano quindi un valore residuo tutt'altro che trascurabile. Per quanto riguarda le fondazioni delle torri, esse sono previste interrate circa un metro sotto il piano campagna e, pertanto, il soprastante terreno è sufficiente a garantire il ripristino della flora.

10 ANALISI SULLE RICADUTE SOCIALI E OCCUPAZIONALI

L'inserimento di un'iniziativa tendente alla realizzazione e alla gestione di un impianto eolico nella realtà sociale e nel contesto locale è di fondamentale importanza sia perché ne determina l'accettabilità da parte del pubblico, sia perché favorisce la creazione di posti di lavoro in loco, generando competenze che possono essere eventualmente valorizzate e riutilizzate altrove.

Dala realizzazione e messa in esercizio di un impianto eolico, oltre a benefiche ricadute di ambito globale dovute al minore inquinamento per produrre energia elettrica, deriva tutta una serie di ricadute in ambito "locale" che sicuramente possono essere inquadrate come positive per il tessuto socio-economico-territoriale; tra queste si possono sicuramente annoverare:

- 1. Aumento degli introiti nelle casse comunali in quanto i Comuni, che ospitano impianti all'interno dei loro terreni demaniali, ottengono una remunerazione una tantum e flussi derivanti dall'imposta comunale sugli immobili che il più delle volte consente un aumento considerevole del bilancio del Comune stesso
- 2. Incremento delle possibilità occupazionali dovuto agli interventi manutentivi che dovessero risultare necessari
- 3. Maggiore indotto, durante le fasi lavorative, per le attività presenti sul territorio (fornitori di materiale, attività alberghiere, ristoratori, ...)
- possibilità di avvicinare la gente alle fonti rinnovabili di energia per permettere la nascita di una maggiore consapevolezza nei problemi energetici e un maggior rispetto per la natura;
- 5. possibilità di generare, con metodologie eco-compatibili, energia elettrica in zone che sono generalmente in forte deficit energetico rispetto alla rete elettrica nazionale.

Inoltre, la realizzazione di una centrale eolica non sconvolge il territorio circostante, anzi intorno alle macchine è possibile svolgere le attività che avevano luogo in precedenza, senza alcun pericolo per la salute umana e per l'ambiente. Il territorio, dunque, non viene

compromesso, come accade con molte altre attività industriali, ma continua ad essere disponibile per le attività agricole e/o per la pastorizia.

11 CONCLUSIONI

La relazione, per quanto esposto, permette di concludere che:

- il progetto produce energia elettrica a costi ambientali nulli, è economicamente valido, tende a migliorare il servizio di fornitura di energia elettrica a tutti i cittadini ed imprese a costi sempre più sostenibili, agisce in direzione della massima limitazione del consumo di risorse naturali e, quindi, è perfettamente coerente con il concetto di sviluppo sostenibile.
- il tipo di progetto e di lavorazione non implicano consumo di energia elettrica tranne quello minimo necessario per alimentare gli impianti di illuminazione di sicurezza;
- non sono previste emissioni di gas clima-alteranti se non in misura estremamente limitata in quanto i trasporti su gomma sono previsti praticamente solo in fase di cantiere e di dismissione ed in misura del tutto irrilevante;
- il tipo di progetto e di lavorazione non implicano emissione di luce, calore e radiazioni ionizzanti e il tipo di progetto non incide sulla variazione del clima e del microclima, anzi trattandosi di un progetto di produzione di energia elettrica da fonti rinnovabili farà risparmiare t/anno di CO2 con evidenti effetti positivi nella lotta ai cambiamenti climatici;
- L'impianto eolico consente la riduzione di emissioni in atmosfera che hanno effetto inquinante e di quelle che contribuiscono all'effetto serra.

In conclusione, si può affermare che la realizzazione del Parco Eolico "Sellia Marina" si andrà ad inserire in un contesto di produzione di energia elettrica da fonti rinnovabili con un duplice vantaggio ovvero il limitato impatto ambientali rispetto all'utilizzo di combustili fossili e la diversificazione delle fonti di approvvigionamento per la produzione elettrica. Ambedue i vantaggi rappresentano punti di forza strategici per lo sviluppo futuro del territorio della Regione Calabria.

