

Prot. RAGE/AD/DIGE/292 /T Gela, 28 /04/2014 raffineria di gela

Sede legale in Gela, Gontrada Plana del Signore . .. 93012 GELA (CL)

Ministero dell'Ambiente e della Tutela del Territorio (del Mare – Direzione Generale Valutazioni Ambienta

E.prot DVA - 2014 - 0012727 del 05/05/2014

Spett.le

Ministero dell'Ambiente e della Tutela del Territorio e del Mare - Direzione Generale Valutazioni Ambientali Divisione IV - Rischio rilevante e autorizzazione integrata

ambientale
Via Cristoforo Colombo, 44
00147 ROMA
aia@PEC.minambiente.it

Istituto Superiore per la Protezione e la Ricerca Ambientale

Via Vitaliano Brancati, 48
00144 ROMA.
protocollo,ispra@ispra.legalmail.it

e, p.c.

ARPA Sicilia Corso Calatafimi, 217/219 90129 Palermo arpa@pec.arpa.sicilia.it

ARPA Sicilia - Sede Provinciale di Caltanissetta -Viale della Regione, 64 93100 Caltanissetta

arpacaltanissetta@pec.arpa.sicilia.it

2 9 APR. 2014

Oggetto: Decreto MATTM prot. DEC - MIN 0000236 del 21 dicembre 2012 - Autorizzazione integrata ambientale per l'esercizio dell'impianto della società Raffineria di Gela S.p.A., ubicato nel comune di Gela.

Rif. paragrafo 14.7.3 del Piano di Monitoraggio e Controllo - Report annuale RAFFINERIA.

Con riferimento a quanto in oggetto inviamo, in allegato alla presente, il *report* previsto finalizzato ad adempiere alla prescrizione sopra richiamata.

Il Gestore dichiara che, fermo restando quanto dettagliato al punto 13.1 del rapporto, l'esercizio dell'impianto nel periodo di riferimento (esercizio 2013) è avvenuto nel rispetto delle prescrizioni e condizioni stabilite nell'AIA e di quanto concordato, ai sensi dell'art. 4 comma 1 del Decreto medesimo, con l'Ente di controllo in materia di cronoprogramma per l'adeguamento e completamento del sistema di monitoraggio prescritto.

Rimanendo disponibili per eventuali ulteriori chiarimenti, inviamo distinti saluti

All. c.s.

Sede le Società Capitale Partita R.E.A. (Società

Sede legale In Geta, Contrada Piena del Signore, 93012 (CL) Società per Azioni Capitale Sociale C 15.000.000,00 i.v.

Partita IVA e Cod. Fisc. 06496081008 R.E.A. Caltenissetta n. 89181 Società soggetta all'attività di direzione e coordinamento dell'Eni S.p.A.

Società a socio unico

DGpostacertificata

Da:

raffineriadigela [raffineriadigela@pec.eni.com]

Inviato:

lunedì 28 aprile 2014 17:14

A:

MATTM DGVA; ispra; ARPA PA; ARPA CL

Oggetto:

RAFFINERIA DI GELA; RIF. PARAGRAFO 14.7.3 DEL PMC - REPORT ANNUALE 2013

Allegati:

RAGE Reporting Annuale AIA 2013 Rev.0 Con Allegati.pdf; RAGE Simulazione

ricadute al suolo 2013 Rev.0 con Tavole.pdf; RAGE_AD_DIGE_292_T.pdf

Con riferimento alla Autorizzazione Integrata Ambientale della società Raffineria di Gela S.p.A. (pubblicata su G.U. del 10/01/2013) inviamo, unitamente alla presente, la lettera di trasmissione relativa agli adempimenti di cui in oggetto e relativi allegati.

Distinti Saluti.

raffineria di gela

Decreto AIA DEC-MIN 0000236 del 21/12/2012

Reporting Annuale 2014 – Esercizio impianto anno 2013

ENI S.p.A. - Raffineria di Gela Aprile 2014

INDICE

Sezior	ne	N° di Pag.
INTRO	DUZIONE	1
1.	IDENTIFICAZIONE DELL'IMPIANTO	2
2.	EMISSIONI PER L'INTERO IMPIANTO: ARIA	3
2.1. 2.2. 2.3.	Tonnellate emesse per anno di SO ₂ , NOx, CO e polveri	4
2.4. 2.5.	Emissione specifica annuale per tonnellata di greggio trattato di SO ₂ , NOx, CO e Polveri (in g/ton di greggio)	4
2.5. 2.6.	Misure di tutti gli inquinanti diversi da quelli tradizionali (SO ₂ , polveri), come i microinquinanti con cadenza semestrale nei diversi camini	
3.	IMMISSIONI PER L'INTERO IMPIANTO: ARIA	6
4.	EMISSIONI PER L'INTERO IMPIANTO: ACQUA	7
5.	EMISSIONE PER L'INTERO IMPIANTO: RIFIUTI	8
6.	EMISSIONE PER L'INTERO IMPIANTO: RUMORE	10
7.	PROGRAMMA LDAR	11
8.	PROGRAMMA PER IL CONTENIMENTO DEGLI ODORI	12
9.	CONSUMI SPECIFICI PER TONNELLATA DI PETROLIO	13
10.	CALDAIE	14
11.	TORCE	15
12.	UNITÀ DI RECUPERO ZOLFO	16
13.	ULTERIORI INFORMAZIONI	17
13.1. 13.2. 13.3.	Valori anomali di emissioneRiepilogo delle comunicazioni relative agli eventi soggetti a notifica Serbatoi e pipe-way	17

ALLEGATI

Allegato 1 Emissioni per l'intero impianto: ARIA

Allegato 2	Emissioni per l'intero impianto: ACQUA
Allegato 3	Emissioni per l'intero impianto: RIFIUTI

Allegato 4 Emissioni per l'intero impianto: RUMORE

Allegato 5 Programma LDAR

Allegato 6 Programma per il contenimento degli odori

Allegato 7 Consumi specifici per tonnellata di petrolio

Allegato 8 Caldaie

Allegato 9 Torce

Allegato 10 Unità di Recupero Zolfo

APPENDICI

Appendice 1 Simulazione modellistica delle ricadute al suolo degli inquinanti emessi - Anno 2013

INTRODUZIONE

La società Raffineria di Gela S.p.A. ha ottenuto l'Autorizzazione Integrata Ambientale (AIA) per l'esercizio della Raffineria sita nel comune di Gela (CL) tramite il Decreto DEC-MIN-0000236 del 21/12/2012 (Decreto AIA). A tale Decreto, pubblicato sulla Gazzetta Ufficiale - Serie Generale n. 8 del 10/01/2013, è allegato il Parere Istruttorio Conclusivo, reso il 13/12/2012 dalla competente Commissione Istruttoria AIA-IPPC con protocollo CIPPC-2012-001654 comprensivo del Piano di Monitoraggio e Controllo (PMC).

In ottemperanza a quanto previsto dal PMC, il Gestore è tenuto alla trasmissione all'Autorità Competente (Ministero dell'Ambiente e della Tutela del Territorio e del Mare – Direzione Generale Salvaguardia Ambientale), all'Ente di controllo (ISPRA), e all'ARPA territorialmente competente, di un Rapporto annuale che descrive l'esercizio dell'impianto nell'anno precedente.

Il Gestore dichiara che l'esercizio dell'impianto nell'anno di riferimento del presente Rapporto annuale è avvenuto nel rispetto delle prescrizioni e condizioni stabilite dal Decreto AIA.

Come comunicato con nota RAGE/AD/26/T del 14.1.2013 si precisa che il Gestore ha avviato l'esercizio dell'impianto secondo i requisiti del Decreto AIA nel corso dell'anno 2013.

Le informazioni riepilogate nel presente documento descrivono l'esercizio della Raffineria di Gela relativo all'anno 2013 e sono articolate nel rispetto dei contenuti previsti nella Sezione 14.7.3 del PMC sopra citato; con particolare riferimento alle modalità di monitoraggio e controllo prescritte nel PMC, si precisa altresì che lo stesso PMC è operativo dal 09/07/2013 in ottemperanza alla tempistica stabilita nel Decreto AIA (Art. 4 comma 1).

Il Rapporto è strutturato nei seguenti capitoli:

- 1. Identificazione dell'impianto
- 2. Emissioni per l'intero impianto: ARIA
- 3. Immissioni dovute per l'intero impianto: ARIA
- 4. Emissioni per l'intero impianto: ACQUA
- 5. Emissioni per l'intero impianto: RIFIUTI
- 6. Emissioni per l'intero impianto: RUMORE
- 7. Programma LDAR
- 8. Programma per il contenimento degli odori
- 9. Consumi specifici per tonnellata di petrolio
- 10. Caldaie
- 11. Torce
- 12. Unità di recupero zolfo
- 13. Ulteriori informazioni.

1. IDENTIFICAZIONE DELL'IMPIANTO

Ragione sociale	Eni S.p.A. Divisione Refining & Marketing – Raffineria di Gela S.p.A.
Sede legale	Gela (Caltanissetta)
Sede operativa	Contrada Località Piana del Signore – 93012 Gela (CL)
Tipo di impianto	Esistente
Gestore	Settimio Carlo Guarrata
Referente IPPC	Massimiliano dell'Agnello

2. EMISSIONI PER L'INTERO IMPIANTO: ARIA

La raffineria ha un sistema SME operativo sui camini di CTE - E3 (impianto SNOx)/E21 (quadricanna), ed ha in corso l'installazione degli SME secondo quanto prescritto dal Decreto AIA, come comunicato con Nota RAGE RAGE/AD/434/T del 16/05/2013. Sugli altri camini la Raffineria esegue il monitoraggio con cadenza discontinua secondo le tempistiche prescritte nel PMC.

Il piano di monitoraggio e controllo della Raffineria di Gela è operativo dal 09/07/2013 in ottemperanza alla tempistica stabilita nel Decreto AIA. Si segnala pertanto che l'esercizio dell'anno 2013 è caratterizzato da una variazione nelle campagne di monitoraggio avvenuta nel corso dell'anno. La seguente tabella illustra la periodicità dei controlli per SO₂, NOx, CO e polveri dal Luglio 2013 secondo quanto prescritto nel PMC, e fino a Giugno 2013 secondo l'assetto autorizzativo vigente precedentemente al rilascio del Decreto AIA.

O comitati	0: -1-	Modalità di	nonitoraggio Precedente		
Camini	Sigla	Vigenza PMC AIA	Precedente		
Camini CTE dotati di SME	E3, E21 (SME)	Continuo (SME)	Continuo (SME)		
Camini CTE parametri non SME	E3, E21	Mensile	Tre volte l'anno		
Camini di bolla esclusa CTE	E1, E2, E4- E20, E22, E23	Mensile	Due volte l'anno		
Camini non inclusi nella bolla	E24-E31	Quadrimestrale	Due volte l'anno		

In Allegato 1 si riportano i valori di emissione per l'intero impianto secondo quanto richiesto nella Sezione 14.7.3 del PMC, restituiti in considerazione di quanto sopra esposto.

2.1. Tonnellate emesse per anno di SO₂, NOx, CO e polveri

In Allegato 1 si riportano i quantitativi, espressi in tonnellate, di SO₂, NOx, CO e polveri emessi dall'intero impianto nell'anno 2013. In particolare si riportano:

- Le tonnellate emesse dalla CTE (camini E3, E21), calcolate sulla base dei dati di SME;
- Le tonnellate emesse dai camini di bolla (E1, E2, E4-E20, E22, E23), esclusa la CTE, calcolate sulla base delle analisi discontinue eseguite nell'anno;
- Le tonnellate emesse dai camini non inclusi nella bolla (E24-E31), calcolate sulla base delle analisi discontinue eseguite nell'anno.

2.2. Concentrazione media mensile in mg/Nm³ di SO₂, NOx, CO e polveri

In Allegato 1 si riportano i valori di concentrazione, espressi in mg/Nm3, di SO₂, NOx, CO e polveri nell'anno 2013. I dati presentati risultano dall'elaborazione su base mensile dei seguenti risultati:

- Dati di media mensile per i camini già dotati di SME (di CTE: E3, E21);
- Dati mensili sui camini di bolla (E1, E2, E4-E20, E22, E23), esclusa la CTE, come risultanti dalle analisi discontinue eseguite nell'anno;
- Dati quadrimestrali sui camini non inclusi nella bolla (E24 E31), come risultanti dalle analisi discontinue eseguite nell'anno.

2.3. Emissione specifica annuale dei forni¹, per Gj di energia utilizzata di SO₂, NOx, CO e polveri (in g/Gj)

In Allegato 1 si riportano le emissioni specifiche annuali dei forni di raffineria espresse in g/Gj di energia utilizzata.

2.4. Emissione specifica annuale per tonnellata di greggio trattato di SO₂, NOx, CO e Polveri (in g/ton di greggio)

In Allegato 1 si riportano le emissioni specifiche annuali per tonnellata di greggio trattato, espresse in g/ton di greggio.

Si segnala che il dato relativo alle qualità annuale di greggio trattato è inclusivo della quantità di semilavorato processata nell'anno.

2.5. Stima delle tonnellate di VOC emesse per semestre

In Allegato 1 si riporta la stima delle tonnellate di VOC emesse per semestre, unitamente alle emissioni specifiche annuali per tonnellata di greggio trattato espresse in g/ton di greggio.

Si segnala che la periodicità di monitoraggio dei VOC, prescritta quadrimestrale per i camini che non rientrano nella bolla, consente la mediazione su base annuale e non semestrale.

_

¹ Le emissioni dal "CO Boiler" [FCC] e dalle caldaie non sono incluse in quanto valutate singolarmente nella sezione dedicata del presente report "Caldaie" (Sezione 10)

2.6. Misure di tutti gli inquinanti diversi da quelli tradizionali (SO₂, polveri), come i microinquinanti con cadenza semestrale nei diversi camini

In Allegato 1 si riportano i valori degli inquinanti diversi da quelli tradizionali (soggetti a limiti di bolla) rilevati durante le campagne analitiche periodiche svolte nel corso dell'esercizio 2013.

3. IMMISSIONI PER L'INTERO IMPIANTO: ARIA

In Appendice 1 si riporta lo studio di simulazione modellistica delle ricadute al suolo degli inquinanti emessi in atmosfera derivanti dall'esercizio della raffineria nell'anno 2013, eseguita in ottemperanza alla prescrizione n. 3 del Decreto AIA.

La raffineria di Gela gestisce una rete di 8 centraline di rilevamento della qualità dell'aria. Nella seguente tabella sono indicati gli inquinanti monitorati da ciascuna di esse.

Stazioni appartenenti alla rete di monitoraggio della qualità dell'aria della Raffineria di Gela

Stazione			Inquinanti	monitorati		
Stazione	SO ₂	NO _X	NO ₂	O_3	PM ₁₀	NMHC
C. Soprano	X				X	
P. Rimembranze	X	Х	X	X	X	X
C. Giardina	X					
Ponte Olivo	X					
Niscemi Sud	X				X	
Agip SpA	Х				Х	
Catarrosone	Х			X	X ⁽¹⁾	Х
Farello	Х				Х	

⁽¹⁾ Polveri Sospese Totali.

La rete è completata da una centralina dedicata al monitoraggio dei parametri meteorologici, che rileva il regime anemologico, la pressione atmosferica, la radiazione al suolo, l'umidità relativa e precipitazioni.

Per la simulazione delle ricadute al suolo si sono utilizzati i dati emissivi rilevati ai singoli camini di raffineria, unitamente ai dati meteorologici misurati dalla stazione della rete. I dati di qualità dell'aria rilevati al suolo sono stati utilizzati per la validazione del modello.

Lo studio in Appendice 1 include le elaborazioni relative all'andamento delle concentrazioni di inquinati misurate dalle centraline e dei dati meteorologici.

4. EMISSIONI PER L'INTERO IMPIANTO: ACQUA

All'interno della Raffineria è presente un sistema di raccolta e trattamento delle acque reflue che è composto da una rete fognaria oleosa di raccolta delle diverse tipologie di acque di scarico derivanti dagli impianti produttivi dello stabilimento, da un primo impianto di trattamento nel quale tali acque vengono convogliate per la depurazione attraverso un trattamento chimico-fisico (impianto Trattamento Acque di Scarico - TAS), da un secondo impianto per il trattamento biologico denominato Biologico Industriale. Le acque di processo così trattate (scarico SC_BI) sono quindi inviate al corpo idrico di destinazione, ossia il Mar Mediterraneo. Le acque reflue da pubblica fognatura trattate dall'impianto denominato Biologico Civile, sono inviate al corpo idrico di destinazione, ossia il Mar Mediterraneo, tramite lo scarico SC_BU.

Sono inoltre presenti 5 linee di scarico delle acque di raffreddamento, identificate con le lettere A, C, D1/D2, H1/H2 ed M1/M2.

In Allegato 2 sono riportati i dati relativi all'esercizio dell'intero impianto nell'anno 2013, indicando, per BOD₅, COD, Azoto ammoniacale, solidi sospesi, Cromo totale, Cromo esavalente, Cianuri, Solfuri, BTEX e Fenoli, i chilogrammi emessi per mese², le concentrazioni medie mensili³ e l'emissione specifica semestrale.

² Dati al lordo dei valori di fondo, in ingresso all'impianto con l'acqua mare approvvigionata

³ Il PMC prescrive una frequenza di monitoraggio mensile, pertanto le concentrazioni rilevate corrispondono alle massime e minime mensili.

5. EMISSIONE PER L'INTERO IMPIANTO: RIFIUTI

La Raffineria opera il raggruppamento dei rifiuti in regime di deposito temporaneo adottando il criterio temporale, ai sensi del D.Lgs. n. 152/06. Il deposito di rifiuti, pericolosi e non pericolosi, avviene in regime di raccolta differenziata.

I catalizzatori vengono infustati a bordo impianto e avviati direttamente a smaltimento o alle operazioni di rigenerazione/recupero metalli, esternamente alla raffineria. Altri rifiuti (scarti da manutenzione impianti) vengono smaltiti direttamente o depositati nelle aree di deposito temporaneo prima del successivo smaltimento, nei termini previsti dalla vigente normativa.

L'elenco dettagliato delle aree di deposito temporaneo dei rifiuti prodotti durante l'attività lavorativa è stato trasmesso con nota RAGE/AD/104/T del 07/02/2013 e aggiornato con nota RAGE/AD/DIGE/1082/T del 16/12/2013.

In Allegato 3 al presente rapporto vengono riportati i seguenti dati di produzione di rifiuti per l'anno di esercizio 2013:

- Tonnellate di rifiuti prodotte;
- Tonnellate di rifiuti pericolosi prodotte;
- Produzione specifica di rifiuti pericolosi in kg/ton di greggio⁴
- Tonnellate di rifiuti smaltite internamente alla raffineria, suddivise in pericolosi e non pericolosi;
- Indice di recupero di rifiuti annuo (percentuale tra tonnellate inviate a recupero e quantitativo totale prodotto).

I dati sono riportati sia al lordo che al netto dei volumi annuali trattati di acque di falda derivanti dalle operazioni di bonifica in corso, che rappresentano un quantitativo rilevante del complessivo annuo prodotto dalla raffineria.

La raffineria ha comunicato i quantitativi di rifiuto liquido (CER 050105* perdite di olio, CER 191307*/191308 acque di falda e CER 190703 percolato di discarica) trattato su base mensile con le note elencate nel seguito. In Allegato 3 è riportato il quadro riepilogativo su base mensile delle diverse tipologie di rifiuto liquido trattate.

- Mese di gennaio: RAGE/AD/103/T del 07/02/2013;
- Mese di febbraio: RAGE/AD/211/T del 12/03/2013;
- Mese di marzo: RAGE/AD/309/T del 08/04/2013;
- Mese di aprile: RAGE/AD/426/T del 13/05/2013;
- Mese di maggio: RAGE/AD/547/T del 12/06/2013;
- Mese di giugno: RAGE/AD/632/T del 10/07/2013;
- Mese di luglio: RAGE/AD/691/T del 01/08/2013;
- Mese di agosto: RAGE/AD/745/T del 05/09/2013;

_

⁴ Si segnala che il dato relativo alle qualità annuale di greggio trattato è inclusivo della quantità di semilavorato processata nell'anno

- Mese di settembre: RAGE/AD/862/T del 08/10/2013;
- Mese di ottobre: RAGE/AD/ DIGE/964/T del 07/11/2013;
- Mese di novembre: RAGE/AD/DIGE/1055/T del 06/12/2013;
- Mese di dicembre: RAGE/AD/ DIGE/14/T del 09/01/2014.

6. EMISSIONE PER L'INTERO IMPIANTO: RUMORE

In ottemperanza a quanto definito al capitolo 8 pagina 30 del PMC, nel corso del 2013 non sono intervenute variazioni impiantistiche tali da comportare una variazione dell'impatto acustico della Raffineria nei confronti dell'ambiente esterno, pertanto sono validi i dati dell'ultima campagna di misura eseguita nell'aprile 2010.

In Allegato 4 al presente rapporto vengono riportati i risultati relativi all'ultima campagna di monitoraggio. I risultati delle prove hanno evidenziato come i livelli acustici rilevati presso i recettori sensibili, identificati tramite la planimetria in Allegato 4, rispettano i limiti definiti dalla normativa vigente.

7. PROGRAMMA LDAR

In ottemperanza a quanto prescritto nel Decreto AIA, con nota RAGE/AD/408/T del 9/5/2013 la raffineria ha trasmesso il programma LDAR (prescrizione n. 44 del PIC).

Nel rispetto della pianificazione trasmessa nella nota sopra citata, nel corso dell'anno di esercizio 2013 sono state completate le fasi di censimento e di monitoraggio estensivo, le cui risultanze sono illustrate nel Rapporto d'ispezione LDAR riportato in Allegato 5.

8. PROGRAMMA PER IL CONTENIMENTO DEGLI ODORI

In ottemperanza a quanto prescritto nel Decreto AIA, con nota RAGE/AD/349/T del 19/04/2013 la raffineria ha trasmesso il programma di monitoraggio degli odori (prescrizione n. 43 del PIC).

Nel rispetto della pianificazione trasmessa nella nota sopra citata, nel corso dell'anno di esercizio 2013 è stata conclusa la Fase 1, corrispondente al monitoraggio tramite analisi olfattometrica dinamica delle zone critiche individuate sulla base dell'ubicazione delle fonti di emissioni odorigene attive in raffineria. In Allegato 6 si riportano anche i risultati delle campagne di monitoraggio.

I rilievi eseguiti, con speciazione e quantificazione delle emissioni odorigene tramite analisi chimica, sono stati condotti in corrispondenza dei punti rappresentativi identificati nella planimetria allegata alla nota RAGE/AD/349/T del 19/04/2013 (anch'essa riproposta in Allegato 6).

A seguito del completamento delle campagne di misura il programma prevede l'avvio della Fase 2, con la valutazione dell'impatto olfattivo su recettori potenzialmente esposti tramite l'applicazione del modello di dispersione.

9. CONSUMI SPECIFICI PER TONNELLATA DI PETROLIO

In Allegato 7 al presente rapporto vengono riportati i consumi specifici di combustibili, di energia elettrica e di risorse idriche in accordo con quanto definito nel PMC del Decreto AIA.

10. CALDAIE

In Allegato 8 al presente rapporto vengono riportati i valori delle emissioni dell'impianto CTE-SNOx⁵ in termini di tonnellate annue ed emissione specifica per Gj di energia utilizzata.

ENI R&M – Raffineria di Gela

Pagina 14

⁵ Il "CO Boiler" [FCC] è rimasto inattivo nel corso dell'anno di esercizio 2013

11. TORCE

Tutti gli scarichi funzionali degli impianti sono convogliati attraverso i collettori di blow-down al sistema delle quattro Torce Idrocarburiche della Raffineria D1, D, B, e C.

Nel corso dell'anno di esercizio 2013 si è provveduto all'installazione dei misuratori di portata sui collettori delle quattro torce secondo quanto prescritto dal Decreto AIA. L'attività è stata svolta in due fasi come comunicato nelle note e RAGE/AD/187/T del 01/03/2013 e RAGE/AD/402/T del 06/05/2013.

Nello specifico, sulle Torce D1 e C i misuratori di portata sono entrati in esercizio il 23 Aprile 2013. La Torcia C è tuttavia rimasta inattiva fino al 02/09/2013 per attività di manutenzione programmata, mentre dal 7/9/2013 al 30/10/2013 è stata messa in manutenzione la guardia idraulica della Torcia D1.

Sulle Torce B e D i misuratori sono stati installati in data 01/10/2013 e sono entrati in esercizio in data 09/11/2013 (torcia D) e 17/11/2013 (torcia B).

In Allegato 9 sono riportati i dati ed i diagrammi dei flussi di gas in torcia misurati giornalmente, relativi al 2013.

Nel corso del 2013 non si sono verificati eventi comportanti attivazione del sistema torce di raffineria a seguito di situazioni di emergenza e sicurezza, né è mai stato superato il valore soglia di 150 ton/giorno (si veda anche nota del Gestore Prot. RAGE/AD/239/T del 18/03/2013).

12. UNITÀ DI RECUPERO ZOLFO

La Raffineria risulta dotata di due unità di recupero Zolfo dai gas acidi di raffineria; una unità "Claus" per la conversione dell'idrogeno solforato (H₂S) in Zolfo elementare, ed una unità "Acido Solforico" per la conversione dell'idrogeno solforato (H₂S) in acido solforico.

In Allegato 10 al presente rapporto vengono riportati i dati relativi all'esercizio delle unità di recupero Zolfo nell'anno 2013.

Si precisa che fino all'installazione del sistema di misurazione in continuo prescritto nel Decreto AIA, la determinazione della resa di conversione viene eseguita utilizzando i dati derivanti dal monitoraggio semestrale previsto dal PMC.

13. ULTERIORI INFORMAZIONI

13.1. Valori anomali di emissione

Nel corso dell'anno di esercizio 2013 sono stati riscontrati in due occasioni dei valori anomali nella concentrazione di BOD_5 rispetto al limite autorizzato allo scarico (pari a 25 mg/l ex Tab.1, Colonna II, Allegato 5 alla parte III del D.Lgs 152/06 e s.m.i.). Entrambi i casi sono occorsi in corrispondenza dello scarico terminale dell'Impianto Biologico Urbano denominato SC_BU, dove il valore rilevato è risultato eccedere sia nel campione prelevato in data 20/05/2013 (con 64 mg/l) che nel campione prelevato in data 11/07/2013 (con 45,1 mg/l).

Tali eccedenze sono state notificate da ISPRA al MATTM rispettivamente con Note n. 40111 del 09/10/2013 e n. 50283 del 13/12/2013. Nelle note sono indicate le azioni correttive da attuarsi a carico della raffineria, alla luce del fatto che le cause del fenomeno sono da ascriversi al permanere delle condizioni di costante esercizio dell'Impianto medesimo al massimo della portata consentita⁷.

13.2. Riepilogo delle comunicazioni relative agli eventi soggetti a notifica

Nel seguito si riporta il riepilogo delle comunicazioni trasmesse nell'anno 2013 riguardo alle fermate degli impianti di recupero Zolfo (prescrizione n. 38), e dell'impianto SNOx (prescrizione n. 12).

	Anno 2013					
Riepilogo co	municazioni relative a fermata degli im	pianti di recupero Zolfo	e SNOx			
Riferimento Raffineria	Cladetto Linguage evento					
Trasmissione PEC 11.1.2013	AIA Raffineria di Gela - prescrizione n° 12 impianto SNOx	Fermata impianto SNOx del 07/01/2013 per manutenzione	12			
RAGE/AD/61/T del 25/01/.2013	Decreto MATTM prot. DEC-MIN-0000236 del 21 Dicembre 2012 – Autorizzazione Integrata Ambientale per l'esercizio dell'impianto della Società Raffineria di Gela S.p.A., ubicato nel Comune di Gela. Rif. Paragrafo 8.2.8. prescrizione n° 38 del Parere Istruttorio Conclusivo	Fermata impianto Claus del 24/01/2013 per riduzione carico acido (riduzione passo lavorazione)	38			

_

⁶ L'Impianto Biologico Urbano è di proprietà della Regione Sicilia ed è gestito dalla raffineria.

⁷ Le medesime azioni correttive, in adempimento alle quali la raffineria si è prontamente attivata a partire dal manifestarsi dell'evento, sono state rese prescrittive dal MATTM tramite Nota prot DVA-2013-24622 del 28/10/2013 e riconfermate con successiva prot DVA-2014-962 del 15/01/2014.

	Anno 2013					
Riepilogo co	Riepilogo comunicazioni relative a fermata degli impianti di recupero Zolfo e SNOx					
Riferimento Raffineria	Oggetto	Tipologia evento	prescr. AIA			
RAGE/AD/195/ T del 04/03/.2013	Decreto MATTM prot. DEC-MIN-0000236 del 21 Dicembre 2012 – Autorizzazione Integrata Ambientale per l'esercizio dell'impianto della Società Raffineria di Gela S.p.A., ubicato nel Comune di Gela. Rif. Paragrafo 8.2.8. prescrizione n° 38 del Parere Istruttorio Conclusivo	Fermata impianto Claus del 04/03/2013 per riduzione carico acido (fermata Desolforazione Flussanti, Desolforazione Benzina MF e riduzione passo Topping 2 e Coking 2)	38			
RAGE/AD/272/ T del 28/03/2013	Decreto MATTM prot. DEC-MIN-0000236 del 21 Dicembre 2012 – Autorizzazione Integrata Ambientale per l'esercizio dell'impianto della Società Raffineria di Gela S.p.A., ubicato nel Comune di Gela. Rif. Paragrafo 8.2.8. prescrizione n° 38 del Parere Istruttorio Conclusivo	Fermata impianto Claus del 27/03/2013 per riduzione carico acido in lavorazione (fermata Desolforazione Flussanti)	38			
RAGE/AD/514/ T del 05/06/2013	Decreto MATTM prot. DEC-MIN-0000236 del 21 Dicembre 2012 – Autorizzazione Integrata Ambientale per l'esercizio dell'impianto della Società Raffineria di Gela S.p.A., ubicato nel Comune di Gela. Rif. Paragrafo 8.2.8. prescrizione n° 38 del Parere Istruttorio Conclusivo (PIC)	Fermata impianto Claus del 05/06/2013 per riduzione carico acido (fermata Topping 1 e Coking 1)	38			
RAGE/AD/717/ T del 12/08/.2013	Decreto MATTM prot. DEC-MIN-0000236 del 21 Dicembre 2012 – Autorizzazione Integrata Ambientale per l'esercizio dell'impianto della Società Raffineria di Gela S.p.A., ubicato nel Comune di Gela. Rif. Paragrafo 8.2.8. prescrizione n° 38 del Parere Istruttorio Conclusivo (PIC)	Fermata impianto Acido Solforico del 12/08/2013 per riduzione carico acido (fermata HDS)	38			
RAGE/AD/738/ T del 02/09/2013	Decreto MATTM prot. DEC-MIN-0000236 del 21 Dicembre 2012 – Autorizzazione Integrata Ambientale per l'esercizio dell'impianto della Società Raffineria di Gela S.p.A., ubicato nel Comune di Gela. Rif. Paragrafo 8.2.8. prescrizione n° 38 del Parere Istruttorio Conclusivo (PIC)	Fermata impianto Claus del 31/08/2013 per riduzione carico acido (fermata Desolforazione Gasoli e Flussanti)	38			
RAGE/AD/831/ T del 30/09/2013	Decreto MATTM prot. DEC-MIN-0000236 del 21 Dicembre 2012 – Autorizzazione Integrata Ambientale per l'esercizio dell'impianto della Società Raffineria di Gela S.p.A., ubicato nel Comune di Gela. Rif. Paragrafo 8.2.8. prescrizione n° 38 del Parere Istruttorio Conclusivo (PIC)	Fermata impianto Claus del 28/09/2013 per riduzione carico acido (fermata Desolforazione Gasoli)	38			

Nel seguito si riporta il riepilogo delle comunicazioni trasmesse nell'anno 2013 riguardo agli eventi con rilascio di sostanze pericolose (prescrizione n. 70).

Anno 2013							
Riepilogo	Riepilogo comunicazioni relative ad eventi con rilascio di sostanze pericolose						
Riferimento Raffineria	C)agetto Linologia evento						
RAGE/AD/171/ T del 25/02/2013	Comunicazione Evento del 24/02/2013 presso S110 – art.242 DLgs 152/06	Presenza prodotto idrocarburico nel bacino del serbatoio causa trasudamento trincerino di fondo durante le attività di svuotamento	70				

Rienilogo	Anno 2013 Riepilogo comunicazioni relative ad eventi con rilascio di sostanze pericolose				
Riferimento Raffineria	Oggetto	Tipologia evento	prescr. AIA		
RAGE/AD/271/ T del 27/03/2013	Comunicazione Evento del 27/03/2013 presso la Torcia D/D1 di Raffineria - art.242 DLgs 152/06	Possibile perdita della linea parzialmente interrata di collegamento del troppo pieno della Guardia Idraulica con il relativo sistema di rilancio	70		
RAGE/AD/334/ T del 13/04/2013	Comunicazione Evento del 13/04/2013 presso incrocio 20 della Raffineria - art.242 DLgs 152/06	Perdita di prodotto idrocarburico della linea del diametro di 3" denominata P254 posata sul pipe rack dell'incrocio n.20 della Raffineria.	70		
RAGE/AD/415/ T del 10/05/.2013	Comunicazione Evento del 09/05/2013 presso incrocio 35 della Raffineria - art.242 DLgs 152/06	Perdita di prodotto idrocarburico della linea denominata P131 posata in un fascio tubiero presso l'incrocio 35 in Isola 20 della Raffineria	70		
RAGE/AD/485/ T del 25/05/2013	Comunicazione Evento del 25/05/2013 presso impianto TAS della Raffineria - art.242 DLgs 152/06	Fuoriuscita di acqua mista a prodotto di natura idrocarburica dalle fogne interne di impianto e dalle vasche terminali	70		
RAGE/AD/499/ T del 30/05/2013	Comunicazione Evento del 29/05/2013 presso il fascio tubiero posto a Sud Ovest della cabina elettrica Sala Neri (Isola 19 di Raffineria).	Perdita di prodotto idrocarburico da una linea posta su fascio tubiero ed attraversamento stradale, in Isola 19.	70		
RAGE/AD/509/ T del 04/06/2013	Comunicazione Evento del 04/06/2013 presso il Canale acqua – mare della Raffineria di Gela – art.242 DLgs 152/06	Perdita di prodotto idrocarburico da uno scambiatore ad acqua-mare di pertinenza dell'impianto Topping 1 con rilascio verso lo scarico	70		
RAGE/AD/567/ T del 17/06/2013	Comunicazione Evento del 16/06/2013 presso scarico finale asta M1M2– art.242 DLgs 152/06	Perdita di prodotto idrocarburico sullo scarico acqua-mare asta M1/M2 della Raffineria	70		
RAGE/AD/693/ T del 02/08/2013	Comunicazione Evento del 02/08/2013 presso il rack posto a Nord della Sala Bianchi (Isola 20 di Raffineria) – art.242 DLgs 152/06	Perdita di prodotto idrocarburico dalla linea P2 posta su un rack a Nord della Sala Bianchi in Isola 20 della Raffineria	70		
RAGE/AD/777/ T del 12/09/2013	Comunicazione Evento del 12/09/2013 presso la Testata Pontile della Raffineria – art.242 DLgs 152/06	Perdita di prodotto idrocarburico dalla linea P2, in prossimità della testata del Pontile della Raffineria	70		

Nel seguito si riporta il riepilogo delle comunicazioni trasmesse nell'anno 2013 riguardo agli eventi incidentali (prescrizione n. 105).

	Anno 2013					
	Riepilogo comunicazioni relative ad eventi	incidentali				
Riferimento Raffineria	Oggetto	Tipologia evento	prescr. AIA			
RAGE/AD/459/ T del 20/05/2013	Decreto MATTM prot. DEC-MIN-0000236 del 21 Dicembre 2012 – Autorizzazione Integrata Ambientale per l'esercizio dell'impianto della Società Raffineria di Gela S.p.A., ubicato nel Comune di Gela. Rif. Paragrafo 8.9 prescrizione n° 105 del PIC e paragrafo 14.5 del PMC.	Perdita di aria dalla condotta aria comburente in data 18/05/2013	105			
RAGE/AD/478/ T del 23/05/2013	Decreto MATTM prot. DEC-MIN-0000236 del 21 Dicembre 2012 – Autorizzazione Integrata Ambientale per l'esercizio dell'impianto della Società Raffineria di Gela S.p.A., ubicato nel Comune di Gela. Rif. Paragrafo 8.9 prescrizione n° 105 del PIC e paragrafo 14.5 del PMC – disservizio presso impianto di trattamento finale reflui liquidi di raffineria	Relazione tecnica in merito alla presenza, in data 22/05/2013, di schiumeggiamento in concomitanza della vasca di omogeneizzazione uscita TAS / ingresso Biologico Industriale	105			
RAGE/AD/507/ T del 04/06/2013	Decreto MATTM prot. DEC-MIN-0000236 del 21 Dicembre 2012 – Autorizzazione Integrata Ambientale per l'esercizio dell'impianto della Società Raffineria di Gela S.p.A., ubicato nel Comune di Gela. Rif. Paragrafo 8.9 prescrizione n° 105 del PIC e paragrafo 14.5 del PMC – disservizio presso impianto Topping 1 di raffineria	Disservizio impianto Topping 1 con rilascio di idrocarburi in data 04/06/2013	105			

13.3. Serbatoi e pipe-way

Come da comunicazione RAGE/AD/DIGE/1053/T del 05/12/2013 trasmessa in riferimento alla prescrizione n. 73 del Decreto AIA (§ 8.5 del PIC), in data 31/12/2013 sono stati messi fuori servizio i <u>serbatoi</u> non ancora dotati di doppio fondo, elencati nel seguito:

- S 103_Rec Gas;
- S 2;
- S 10;
- S 13;
- S 42;
- S 43;
- S 44;
- S 803;
- S 802;
- S 713;
- S 957;
- S 317.

In conformità alla prescrizione n. 77 del Decreto AIA (§ 8.5 del PIC) la raffineria ha trasmesso con nota RAGE/AD/DIGE/1007/T del 26/11/2013 il programma di ispezione preventiva del <u>sistema pipe-way di stabilimento</u> basato sul sistema RBI (Risk Based Inspection).

In conformità alla prescrizione n. 78 del Decreto AIA (§ 8.5 del PIC) la raffineria ha trasmesso con nota RAGE/AD/DIGE/1025/T del 29/11/2013 il programma di ispezione relativo ai serbatoi e relativi bacini di contenimento.

Allegati

Allegato 1

Emissioni per l'intero impianto: ARIA

Si riportano il flusso massico annuale, la concentrazione media annuale e l'emissione specifica per tonnellata di lavorato delle emissioni convogliate ai seguenti camini

Camino	Impianto
Camini in Boli	
E3	CTE
E21	SNOx
Camini in Boli	
E1	Topping1
E2	Topping 2
E5	Vacuum
E6	Vacuum
E4	FCC
E7	Coking1
E22	Coking2
E16	CLAUS
E10	MF - Unifining
E11	MF - Platforming
E8	BTX - Unifining
E9	BTX - Platforming
E13	Des Gasoli
E12	Des Flussanti
E15	Alchilazione
E14	Platfining
E17	Texaco - A
E18	Texaco - B
E19	Ac Solforico - C6
E20	Ac Solforico - MK1
E23	LCN
	Bolla - Raffineria
E24	Cabina verniciatura GPL
E25	Ingresso forno GPL
E26	Uscita forno GPL
E27	VRU DEINT
E28	Filtri a carboni attivi TAF
E29	Termossidatore TAF
E30/31	Filtri a carboni attivi TAS
E32	VRU Pontile

Tonnellate emesse per anno di SO₂, NOx, CO e polveri

	Tonnel	Anno 2013 Tonnellate emesse per anno di SO ₂ , NOx, CO e polveri		
	SO ₂ (t/a) NOx (t/a) CO (t/a) PST (t/a)			
CTE-SNO _X (E3 ed E21)	1.786,00	452,00	223,00	17,00
RAFF E1-23 (escluso E3 ed E21)	2.322,00	215,00	487,00	7,00
RAGE E24-31	0,40	1,35	0,40	0,14
Intero impianto	4.108,40 668,35 710,40 24,14			

Concentrazione media mensile in mg/Nm³ di SO₂, NOx, CO e polveri

		Concentrazione me	Anno 2 dia mensile in mg/Nm		polveri (calcolata
_	Periodicità: mensile	SO₂ (mg/Nm ³)	NOx (mg/Nm ³)	CO (mg/Nm ³)	PST (mg/Nm ³)
	Gennaio	946,0	288,0	138,4	2,3
	Febbraio	722,0	174,0	147,9	3,7
	Marzo	786,0	136,0	149,4	3,9
	Aprile	529,0	136,0	111,7	5,6
	Maggio	427,0	170,0	110,5	5,3
CAMINI IN BOLLA E1-E23	Giugno	508,0	147,0	119,5	5,4
CAMINI IN BOLLA E1-E23	Luglio	468,0	94,0	114,4	7,0
	Agosto	801,0	67,0	145,0	3,9
	Settembre	628,0	67,0	130,0	4,6
	Ottobre	751,0	75,0	123,7	4,7
	Novembre	693,0	116,0	123,5	3,5
	Dicembre	729,0	119,0	96,2	6,2

Concentrazione media quadrimestrale in mg/Nm³ di SO₂, NOx, CO e polveri

		Concentrazione n	Anno : nedia quadrimestrale		Ox, CO e polveri
	Periodicità: quadrimestrale ¹	SO₂ (mg/Nm ³)	NOx (mg/Nm ³)	CO (mg/Nm ³)	PST (mg/Nm ³)
	1^quadrimeste 2013	0,63	2,15	0,89	0,37
CAMINI NON IN BOLLA E24-E31	2^quadrimestre 2013	1,05	7,52	1,94	0,13
	3^quadrimestre 2013	1,51	2,66	0,88	0,03

¹ Monitoraggi eseguiti con cadenza quadrimestrale secondo prescrizione PMC

Emissione specifica annuale per tonnellata di greggio trattato di SO₂, NOx, CO e polveri

Anno 2013											
Emissione specifica per tonnellata di lavorato											
Macroin	quinante	g/t greggio									
SO ₂			2.496,87								
NOx			406,19								
CO			431,74								
PST			14,67								

	Anno 2013
	Tonnellate lavorate ¹
	1.645.418
_	

¹ Somma greggi + semilavorati

Stima delle tonnellate di VOC emesse per semestre

Anno 2013								
Stima delle tonnel	late di VOC emesse per semestre ¹							
Totale anno (t)	l semestre (t)	II semestre (t)						
52 26 26								

¹ I dati emissivi su base quadrimestrale per i camini E24-E31 consentono calcolo media annuale

Emissione specifica annuale dei forni per Gj di energia utilizzata di SO₂, NOx, CO e polveri

		Emissione speci	ifica annuale dei f	o 2013 forni ¹ per Gj di ene CO e polveri	ergia utilizzata di
Camino	Impianto / forno di processo	SO₂ (g/Gj)	NOx (g/Gj)	CO (g/Gj)	PST (g/Gj)
E1	Topping1	123,26	51,68	2,88	2,16
E2	Topping 2	61,46	77,36	1,00	0,74
E5	Vacuum	193,22	63,67	2,33	3,06
E6	Vacuum		in esercizio, ma nor	n in marcia nell'anno	
E7	Coking1	185,51	116,90	68,51	1,46
E22	Coking2	30,52	70,59	0,91	1,60
E10	MF - Unifining	337,39	136,32	96,88	1,80
E11	MF - Platforming		in esercizio, ma nor	n in marcia nell'anno	
E8	BTX - Unifining		in esercizio, ma nor	n in marcia nell'anno	
E9	BTX - Platforming		in esercizio, ma nor	n in marcia nell'anno	
E13	Desolforazione Gasoli	142,04	122,14	616,34	1,93
E12	Desolforazione Flussanti	108,42	121,74	6,89	1,13
E15	Alchilazione		in esercizio, ma nor	n in marcia nell'anno	
E14	Platfining	1245,12	348,53	46,81	1,77
E23	LCN				

¹ Il valori relativi alle caldaie - Centrale CTE - sono riportati nell'allegato 8 "Caldaie".

= Dato inferiore al limite di rilevabilità (per convenzione e ai fini di calcolo si indica la metà del l.r.)

			Cloro															Nichel											
Sigla camino	Impianto	Q N==3/b	(ed i suoi composti	Cl ₂	IPA	Cadmio	PCDD	PCDF	РСВ	PCT	PCN	Berillio	Mercurio	Tallio	Arsenico	Cromo VI	Cobalto	(respirabile insolubile	Selenio	Tellurio	Antimonio	Cromo III	Manganese	Palladio	Piombo	Platino	Rame	Rodio	Stagno
		Nm³/h	come acido cloridrico)				(17 cogeneri) (1	7 cogeneri)										sotto forma di polvere)											
OUADDIMECT	RALE DI MAGGIO 2013	Nm³/h	mg/Nm ³	mg/Nm ³	mg/Nm³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm³	mg/Nm ³	mg/Nm³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm³	mg/Nm ³				
	SNOx	321.200	0,05	0,05	0,0005	0,0025		0	,000000005				0,0025		0,0025	0,05	0,0025	0,035	0,0025		0,0025			0,0025			0,0025		
	QUADRICANNE 1 QUADRICANNE 2	1.200 800	13,80 5,00	0,05	0,0005 0,0005			0	,000000005				0,0025 0,30		0,0025 0,0025	0,05 0,0200	0,0025	0,02 0,0100	0,0025 0,0025		0,0025			0,0025	0,0200		0,01 0,01		
E21-3	QUADRICANNE 3	-														,									0,0200				
	QUADRICANNE 4 RALE DI SETTEMBRE 2013	166.300	23,50	1,80	0,0005	0,0025		0	,000000005				0,0025		0,0025	0,05	0,0025	0,011	0,0025		0,0025			0,0025			0,005		
E3	SNOx	452.700	0,05	0,05	0,0005	0,0005	0,000000025 0,0	000000025 0,	,0000000025	0,000000005	0,00005	0,0005	0,0005	0,0005	0,0005	0,05	0,0005	0,004	0,0005	0,0005	0,0005		0,002	0,0005	0,011	0,0005	0,0010	0,0005	0,0005
	QUADRICANNE 1 QUADRICANNE 2	1.000																											
E21-3	QUADRICANNE 3	-																											
	QUADRICANNE 4 TRALE MARZO-APRILE 2013	-																										l	
	Topping1	-	1.00	0.05	0.0005	0.0005		0					0.0005		0.0005	0.05	2 2225	2 222	0.0005		0.0005			0.0005			0.000		
E2 E5	Topping 2 Vacuum	16.000	1,60	0,05	0,0005	0,0025		U	0,000000005				0,0025		0,0025	0,05	0,0025	0,022	0,0025		0,0025			0,0025			0,009		
E6 E4	Vacuum FCC	-																											
E7	Coking1	-																											
E22 E16	Coking2 CLAUS	22.000 69.000	2,80 3,70	0,05 0,05	0,0005 0,0005				0,000000005				0,0025 0,0025		0,0025 0,0025	0,05 0,05	0,0025 0,0025	0,040	0,0025 0,0025		0,0025 0,0025			0,0025 0,0025			0,006 0,080		
E10	MF - Unifining	6.000	7,50	0,05	0,0005				,000000005				0,0025		0,0025	0,05	0,0025	0,006	0,0025		0,0025			0,0025			0,0025		
	MF - Platforming BTX - Unifining	-																											
	BTX - Platforming	-																											
E13 E12	Des Gasoli Des Flussanti	15.000	4,80	0,05	0,0005	0,0025		0	0,00000005				0,0025		0,0025	0,05	0,0025	0,0025	0,0025		0,0025			0,0025			0,0025		
E15 E14	Alchilazione Platfining	-																											
E17	Texaco - A	17.227	4,90	0,05	0,0005	0,0025		0	,000000005				0,0025		0,0025	0,05	0,0025	0,02	0,0025		0,0025			0,0025			0,0025		
E18 E19	Texaco - B Ac Solforico - C6	6.500	1,50	0,05	0,0005	0.0025		0	0,000000005				0.0025		0,0025	0,10	0,0025	0,0025	0,0025		0,0025			0,0025			0,0025		
E20	Ac Solforico - MK1	-	1,00	0,00	0,0000	0,0020		Ū	,,00000000				0,0020		0,0020	0,10	0,0020	0,0020	0,0020		0,0020			0,0020			0,0020		
	LCN IESTRALE LUGLIO 2013	-					<u> </u>			L				<u> </u>				<u> </u>	<u> </u>				<u> </u>					J	
E1	Topping1	36.680	0,008	0,008	0,000087	0,00185		0	,000002893				0,00075		0,0018	0,00005	0,0018	0,0748	0,018		0,018			0,00185			0,0018		
E2 E5	Topping 2 Vacuum	15.721	2,49	0,008	0,0000649	0,0015		0	0,000004171				0,0014		0,0015	0,0001	0,0041	0,1909	0,0015		0,0015			0,0015			0,0043		
E6 E4	Vacuum FCC	15.721	2,49	0,008	0,0000649	0,0015		0	,000004171				0,0014		0,0015	0,0001	0,0041	0,1909	0,0015		0,0015			0,0015			0,0043		
E7	Coking1	39.057	1,14	0,105	0,000545	0,0025		0	,000002765				0,0019		0,0025	0,00005	0,0025	0,0025	0,0025		0,0025			0,0025			0,0025		
E22 E16	Coking2 CLAUS	12.196	1,12	0,16	0.000261	0.0011			0,00000206				0.0011		0.00105	0,00005	0,0832	0,1730	0,00105		0,00105			0,0011			0,0266		
E10	MF - Unifining	5.873	3,90	0,065	0,000071				0,000001583				0,0011		0,00085	0,00005	0,00085	0,0042	0,00085		0,00085			0,00085			0,00085		
	MF - Platforming BTX - Unifining																												
E9	BTX - Platforming	10.000	0.05	0.40	0.000007	0.00455			0.00000010				0.0040		0.00455	0.00010	0.00455	0.0405	0.00455		0.00455			0.00455			0.0040		
E13 E12	Des Gasoli Des Flussanti	10.690	0,85	0,10	0,000237	0,00155			0,00000312				0,0010		0,00155	0,00010	0,00155	0,0135	0,00155		0,00155			0,00155			0,0043		
E15 E14	Alchilazione Platfining																												
E17	Texaco - A	7.577	1,18	0,05	0,000036	0,0008		0,	,0000005681				0,0004		0,0008	0,00005	0,0008	0,319	0,0008		0,0008			0,0008			0,0207		
E18 E19	Texaco - B Ac Solforico - C6	15.442	0,075	0.075	0,000256	0.00125		0	0.000001146				0,00105		0.00125	0.0001	0,059	0.3317	0.00125		0,00125			0,00125			0,011		
E20	Ac Solforico - MK1	4.485	0.05	0.05	0,000064	0.001			0,0000036				0,00075		0.00100	0.00005	0.001	0,0013	0.00100		0,00100			0,00100			0,00100		
	LCN IMESTRALE 2013					<u> </u>													<u> </u>						<u> </u>				
E24	Cabina verniciatura GPL Ingresso forno GPL	1.900 3.300	0,05 0,05		0,0005 0,0005								0,0025 0,0025		0,0025 0,0025	0,05 0,05			0,0025 0,0025						0,0025 0,0025		0,0025 0,0025		
E26	Uscita forno GPL	5.100	1,10		0,0005								0,0025		0,0025	0,05		0,0025 0,0025							0,0025		0,0025		
	VRU DEINT Filtri a carboni attivi TAF	62 22.000	0,25 3,70	0,05	0,0005	0.0025			0,000000005				0,0025		0,0025	0,05	0,0025	0,0025	0,0025		0,0025			0,0025			0,0025		
E29	Termossidatore TAF	690	9,50	0,20	0,0005			0	,000000005				0,0025		0,0025	0,05	0,0025	0,006	0,0025		0,0025			0,0025			0,0050		
	Filtri a carboni attivi TAS VRU Pontile	117	1,40	0,05	0,0005			0	0,00000005				0,0025		0,0025	0,05	0,0025	0,0025	0,0025					0,0025			0,0025		
SECONDA QUA	ADRIMESTRALE 2013					l.																							
	Cabina verniciatura GPL Ingresso forno GPL	2.852 2.882	0,230 0,130		0,000017 0,000016								0,00055 0,00055		0,0010 0,0008	0,00005		0,00150	0,0010 0,0008						0,0010 0,0008		0,0010		
E26	Uscita forno GPL VRU DEINT	4.720 62	0,25 0,25		0,0000375								0,00070		0,0008	0,00005		0,00085	0,0008						0,0008		0,0008		
E28	Filtri a carboni attivi TAF	27.501	0,25		0,0000125								0,0065		0,0075	0,00005		0,00075	0,00075		0,00075				0,00075		0,00075		
E29 E30/31	Termossidatore TAF Filtri a carboni attivi TAS	3.211 133	0,16 0,15		0,0001115						 _		0,0005 0,0065		0,00215 0,00075	0,00010 0,00005		0,0178 0,00075	0,00215 0,00075		0,00215 0,00075				0,00215 0,00075		0,00215 0,00210		
E32	VRU Pontile	-	0,10		3,0000100	0,00070							0,0000		0,00070	0,00000		0,00070	0,00070		0,00070				0,00070		0,00210		
TERZA QUADE E24	IMESTRALE 2013 Cabina verniciatura GPL	2.998	0,25		0.0000420	0.0004	1	Т	Т	Т			0.00090		0.0004	0,0002		0.0004	0,0004	1	ı	Т			0,0004	1	0.0004	T	
E25	Ingresso forno GPL	5.700	0,25		0,0000370	0,0004							0,00085		0,0004	0,0002		0,0004	0,0004						0,0004		0,0004		
E26 E27	Uscita forno GPL VRU DEINT	5.708 62	0,20 2,03		0,0000275	0,0004							0,00090		0,0004	0,0002		0,0004	0,0004						0,0004		0,0004		
E28	Filtri a carboni attivi TAF	30.159	0,78		0,0000260								0,00090			0,00025		0,00080	0,00080		0,00080				0,00080		0,00080		
E30/31	Termossidatore TAF Filtri a carboni attivi TAS	973 100	1,55 0,25		0,0002075 0,0000345								0,00180 0,00130		0,00135 0,00080			0,0037 0,0008	0,00135 0,0008		0,00135 0,0008				0,00135 0,0008		0,00135 0,001		
E32	VRU Pontile	-																											

= Dato inferiore al limite di rilevabilità (per convenzione e ai fini di calcolo si indica la metà del l.r.)

Sigla camino	Impianto	Q	Vanadio	Zinco	Bromo (ed i suoi	Fluoro (ed i suoi	N₂O	Metano CH4	Benzene	PM ₁₀	COVNM	1,3	Toluono	Etil-	p-Xilene	Tetracloro	1,1-Dicloro-	Stirene	1,2-Dicloro-	Idrocarburi	MTBE	Composti organici florurati	Etano	Propilene	Propano	n Putano	Idrocarburi	Idrocarburi	Idrocarburi
Sigla camino	implanto	Nm³/h	Vallaulo			composti come acido fluoridrico)	N ₂ O		Belizelle	1 W110	(non metanici)	Butadiene	Toluene	benzene	p-xilelle	etilene	etilene	Stilelle	propano	(n-esano)	MIBE	(espressi come Freon 113)	Liano	Propiletie	гіорано	II-Butano	C2-C4	C5-C9	C10-C15
QUADRIMEST	RALE DI MAGGIO 2013	Nm ³ /h	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³	mg/Nm ³
E3	SNOx		0,0025	0,009		0,05		0,50	0,05																				
E21-1 E21-2	QUADRICANNE 1 QUADRICANNE 2	1.200 800	0,01	1,12 1,00		0,05 0,05	0,025	8,60 0,50	0,05 0,05	0,0005												0,50							
E21-3	QUADRICANNE 3 QUADRICANNE 4	-	0.0005			0.05	0.005																						
	RALE DI SETTEMBRE 2013	166.300	0,0025	0,065		0,05	0,025	7,30	0,05				l.						[L		L				<u> </u>	<u> </u>		
E3 E21-1	SNOx QUADRICANNE 1	452.700 500	0,0010	0,009	0,05	0,05	0,025		0,05																				
E21-2	QUADRICANNE 2	1.000																											
E21-3 E21-4	QUADRICANNE 3 QUADRICANNE 4	-																											
	STRALE MARZO-APRILE 2013				Į.	L.		l l					l.		ı ı					L		l.	l		L.	Į.	Į.	l l	
E1 E2	Topping1 Topping 2	16.000	0,026	0,042		0,05	0,025	1.80	0.05																				
E5	Vacuum	-	0,020	0,042		0,03	0,025	1,00	0,00																				
E6 E4	Vacuum FCC	-																											
E7	Coking1	-					0.0																						
E22 E16	Coking2 CLAUS	22.000 69.000	0,007 0,007	9,460 0,386		0,05 0,05	0,025 0,025	0,05 0,05	0,90 0,05				 									 							
E10	MF - Unifining	6.000	0,0025	0,35		0,05	0,025	0,05	0,05																				
E11 E8	MF - Platforming BTX - Unifining	-																											
E9 E13	BTX - Platforming Des Gasoli	-																											
E12	Des Gasoli Des Flussanti	15.000	0,0025	0,009		0,05	0,025	0,05	0,05													<u> </u>							
E15 E14	Alchilazione Platfining	-									· · · · · · · · · · · · · · · · · · ·										·								
E17	Texaco - A	17.227	0,089	0,062		0,05	0,025	4,50	0,05																				
E18 E19	Texaco - B Ac Solforico - C6	6.500	0,0025	0,36		0,05	0,025	0,05	0,05																				
E20	Ac Solforico - MK1	-	0,0023	0,50		0,03	0,020	0,03	0,00																				
	LCN MESTRALE LUGLIO 2013	-																											
E1	Topping1	36.680	0,0742	0,0135		0,08	1,56	1,30	0,08																				
E2 E5	Topping 2 Vacuum	15.721	0,1352	0,0574		0,31	1,875	0,30	0,095																				
E6	Vacuum	15.721	0,1352	0,0574		0,31	1,875	0,30	0,095																				
E4 E7	FCC Coking1	39.057	0,0025	0,0046		0,105	2,13	36,10	0,105																				
E22	Coking2			,			,																						
E16 E10	CLAUS MF - Unifining	12.196 5.873	0,0716 0,0023	1,6379 0,0069		0,065 0,065	1,290 1,285	4,00 0,60	0,20 0,17																				
E11	MF - Platforming		3,3320	-,,,,,,,,,		5,000	.,	0,00	•,																				
E8 E9	BTX - Unifining BTX - Platforming																												
E13	Des Gasoli	10.690	0,0033	0,0712		0,10	2,045	1,11	0,35																				
E12 E15	Des Flussanti Alchilazione																												
E14 E17	Platfining Texaco - A	7.577	0,0113	0,0209		0,13	1,00	10,30	0,10																				
E18	Texaco - B	7.577	0,0113	0,0209		0,13	1,00	10,30	0,10																				
E19 E20	Ac Solforico - C6 Ac Solforico - MK1	15.442 4.485	0,0017 0,00100	0,1133 0,0447		0,15 0,05	1,535	0,075 1,40	0,16 0,050																				
E23	LCN		0,00100	0,0-1-1		0,00	1,00	1,-10	0,000																				
	RIMESTRALE 2013 Cabina verniciatura GPL	1.900	T	0.009		0.05	0,025	5.40	0.05						T					T		0,50						T	
E25	Ingresso forno GPL	3.300		0,007		0,05	0,025	5,10	0,05													0,50							
	Uscita forno GPL VRU DEINT	5.100 62		0,007		0,05 0,25	0,025 1,00	5,10	0,05 4,13				-									0,50 0,05							
E28	Filtri a carboni attivi TAF	22.000	0,0025	0,140		0,05	0,025	8,93	0,05	0,50		0,05										.,							
	Termossidatore TAF Filtri a carboni attivi TAS	690 117	0,0025 0,0025	0,037 0,012		0,05 0,05	0,025 0,025	0,62 0,05	0,05 0,05	0,50																			
E32	VRU Pontile	-																											
	ADRIMESTRALE 2013 Cabina verniciatura GPL	2.852	I	0,0367		0,05	1,00	1,30	0,05						I							0,05						I	
E25	Ingresso forno GPL	2.882		0,0191		0,05	1,00	1,50	0,05													0,05							
	Uscita forno GPL VRU DEINT	4.720 62		0,0016		0,25 0,25	1,00	0,80	0,180 4,500			0,05										0,05 0,05							
	Filtri a carboni attivi TAF Termossidatore TAF	27.501 3.211		0,0071 0,00175		0,05 0,32	1,00 1,59	83,50 0,10	0,05 0,260	0,05	7,45 1,71		0,42	0,26	0,29	0,05	3,33	0,05	0,05		1,47	0,05							
E30/31	Filtri a carboni attivi TAS	133		0,00175		0,32	1,59	1,50	0,260	0,05	1,71		0,33	0,09	0,07	0,05	0,04	0,05	0,05		0,05	0,08							
	VRU Pontile RIMESTRALE 2013	-					-																						
E24	Cabina verniciatura GPL	2.998		0,0004		0,05	1,00	0,50	0,05		5,40											0,05							
E25 E26	Ingresso forno GPL Uscita forno GPL	5.700 5.708		0,0004 0,0141		0,05 0,05	1,00 1,00	0,50 0,05	0,05 0,05		11,00										-	0,05 0,05							
E27	VRU DEINT	62		,		0,25	1,00		0,035		36,70	0,05										0,05							
	Filtri a carboni attivi TAF Termossidatore TAF	30.159 973		0,0248 0,0970		0,05 0,250	1,00 1,65	24,70 0,10	0,47 0,085	0,05	72,80 0,83		0,74	0,56	0,05	0,05	3,40	0,05	0,05		0,05	0,05 0,085							
E30/31	Filtri a carboni attivi TAS	100		0,0970		0,250	1,65	0,10	0,085	0,05	0,83 1,44		0,07	0,05	0,05	0,05	0,05	0,05	0,05		0,05	0,085							
E32	VRU Pontile	-																											

Allegato 2

Emissioni per l'intero impianto: ACQUA

			Anno 2013 Chilogrammi emessi per mese (Kg/mese) ¹												
	Gennaio Febbraio Marzo Aprile Maggio Giugno Luglio Agosto Settembre Ottobre Novembre														
	Solidi sospesi totali	913.023	890.176	883.707	847.371	915.956	879.694	809.703	810.706	792.247	802.000	765.182	796.718		
A, C,	BOD ₅	675.777	611.331	657.152	608.147	692.621	716.153	510.818	526.415	488.536	485.097	455.195	480.378		
) , ,	COD	1.495.117	1.326.321	1.413.631	1.352.532	1.476.529	1.515.740	1.066.232	1.109.408	1.027.631	1.059.768	967.679	1.007.504		
₽ ∑	Azoto ammoniacale	43.759	39.591	43.629	35.317	69.244	53.603	2.488	2.613	6.140	5.256	9.901	3.266		
BI, So.	Cromo Totale	9,10E+02	7,40E+02	8,10E+02	6,44E+02	8,07E+02	7,80E+02	2,62E+02	2,64E+02	2,42E+02	2,50E+02	2,40E+02	2,45E+02		
- F	Cromo esavalente	1,24E+03	1,15E+03	1,22E+03	1,18E+03	1,24E+03	1,24E+03	1,31E+03	1,32E+03	1,21E+03	1,25E+03	1,20E+03	1,23E+03		
ni S 1, 2	Fenoli Totali	1,28E+03	1,20E+03	1,25E+03	1,09E+03	1,34E+03	1,25E+03	6,30E+02	6,73E+02	4,04E+02	4,47E+02	5,43E+02	4,29E+02		
rich 1/D	Cianuri totali	1,57E+01	1,27E+01	1,36E+01	1,31E+01	2,52E+01	1,58E+01	1,31E+01	1,32E+01	1,21E+01	1,25E+01	1,20E+01	1,46E+01		
Sca D.	Solfuri	2,21E+04	2,03E+04	2,17E+04	2,11E+04	2,17E+04	2,20E+04	1,72E+04	1,74E+04	1,55E+04	1,62E+04	1,55E+04	1,56E+04		
_,	BTEX	2,22E+01	1,15E+01	1,20E+01	1,16E+01	1,18E+01	1,34E+01	3,81E+00	4,26E+00	1,76E+00	2,01E+00	2,07E+00	4,50E+00		

¹ Dati al lordo dei valori di fondo, in ingresso all'impianto con l'acqua mare approvvigionata

			Anno 2013 Concentrazioni medie mensili (mg/l) ¹												
_		Gennaio Febbraio Marzo Aprile Maggio Giugno Luglio Agosto Settembre Ottobre Novembre Di													
,	Solidi sospesi totali	36,2	38,6	36,0	35,7	36,7	35,2	30,5	30,4	32,4	31,8	31,5	32,0		
A, C,	BOD ₅	26,8	26,5	26,8	25,7	27,8	28,7	19,3	19,7	20,0	19,2	18,8	19,3		
U, A,	COD	59,2	57,6	57,6	57,0	59,2	60,7	40,2	41,5	42,0	42,0	39,9	40,4		
A, ≥	Azoto ammoniacale	1,73	1,72	1,78	1,49	2,78	2,15	0,09	0,10	0,25	0,21	0,41	0,13		
BI, S	Cromo Totale	3,6E-02	3,2E-02	3,3E-02	2,7E-02	3,2E-02	3,1E-02	1,0E-02	1,0E-02	1,0E-02	1,0E-02	1,0E-02	9,9E-03		
C-B	Cromo esavalente	4,9E-02	5,0E-02	5,0E-02	5,0E-02	5,0E-02	5,0E-02	5,0E-02	5,0E-02	5,0E-02	5,0E-02	5,0E-02	5,0E-02		
ii S 1, 2, 1	Fenoli Totali	5,1E-02	5,2E-02	5,1E-02	4,6E-02	5,4E-02	5,0E-02	2,4E-02	2,5E-02	1,7E-02	1,8E-02	2,3E-02	1,7E-02		
richi 1/02	Cianuri totali	6,2E-04	5,5E-04	5,5E-04	5,5E-04	1,0E-03	6,3E-04	5,0E-04	5,0E-04	5,0E-04	5,0E-04	5,0E-04	5,9E-04		
Sca D:	Solfuri	8,8E-01	8,8E-01	8,9E-01	8,9E-01	8,7E-01	8,8E-01	6,6E-01	6,6E-01	6,4E-01	6,5E-01	6,5E-01	6,3E-01		
	BTEX	8,8E-04	5,0E-04	4,9E-04	4,9E-04	4,7E-04	5,4E-04	1,5E-04	1,6E-04	7,3E-05	8,0E-05	8,6E-05	1,8E-04		

¹ Il PMC prescrive una frequenza di monitoraggio mensile, pertanto le concentrazioni rilevate corrispondono alle massime e minime mensili

	1	Anno	2013
		Emissione specifica semestrale p	per m³ di refluo trattato (g/m³)
		1° semestre	2° semestre
	Solidi sospesi totali	34,91	16,05
₽	BOD ₅	37,83	33,88
SC-I	COD	81,17	80,20
Di Di	Azoto ammoniacale	8,94	4,80
<u> </u>	Cromo Totale	1,22E-01	9,52E-03
SC	Cromo esavalente	3,83E-02	5,00E-02
Ë	Fenoli Totali	7,79E-02	4,87E-02
ä	Cianuri totali	5,75E-03	1,22E-03
Scal	Solfuri	2,25E-01	4,29E-01
	BTEX	1,23E-02	8,18E-04

Allegato 3

Emissioni per l'intero impianto: RIFIUTI

		Anno 2013 Rifiuti prodotti	
	U.M.	incluse acque di falda	escluse acque di falda
Totale rifiuti prodotti	ton	1.966.020,41	51.946,21
Rifiuti pericolosi prodotti	ton	1.896.906,66	24.355,66
Produzione specifica rifiuti pericolosi	kg/ton di greggio	1.152,84	14,80
Rifiuti pericolosi smaltiti e/o recuperati internamente	ton	1.873.483,34	-
Rifiuti non pericolosi smaltiti e/o recuperati internamente	ton	86.071,73	-
Indice di recupero (rifiuti recuperati/rifiuti prodotti)	%	0,75%	29%

Anno 2013				
Tonnellate di greggio lavorate ¹				
1.645.418				

¹ Somma greggi + semilavorati

	Anno 2013 Prospetto riepilogativo rifiuti liquidi trattati su base mensile (m³)				
	CER 050105*	CER 191307*	CER 191308	CER 190703	
	perdite di olio (R3)	acque di falda P (D9)	acque di falda NP (D9)	percolato di discarica (D9)	
Gennaio	24,9	160.223	5.621,57	1.659,86	
Febbraio	88,8	142.892	4.929,78	1.511,08	
Marzo	96,9	156.352	5.619,23	1.793,92	
Aprile	101,5	153.575	6.196,63	2.989,78	
Maggio	52,4	161.363	6.534,19	2.467,48	
Giugno	87,875	154.581	6.123,97	1.167,16	
Luglio	76,5	160.067	5.940,89	1.115,45	
Agosto	78,7	160.892	5.569,09	1.012,56	
Settembre	52,5	153.867	4.963,00	1.178,36	
Ottobre	95,1	158.319	5.269,72	1.750,68	
Novembre	104	151.401	4.883,62	1.797,70	
Dicembre	169,5	159.019	5.193,51	1.162,58	

Allegato 4

Emissioni per l'intero impianto: RUMORE

Report Annuale AIA - Anno 2013 - Emissioni intero impianto RUMORE

RUMORE, ANNO 2013 *											
POSIZIONE MISURA	DESCRIZIONE POSIZIONE	GIORNO DELLA MISURA	TEMPO DELLA MISURA	L _{A, eq} dB(A) misurato	L _{A, eq} dB(A) corretto	LIMITE DI EMISSIONE dB(A)	PERIODO DI RIFERIMENTO				
RAFFINERIA											
1	Strada - angolo NW raffineria	20/04/2010	00.37-00.47	54,3	54,5	70,0	diurno - notturno				
2	Perimetro - angolo NW Isola 1	20/04/2010	22.31-22.41	61,1	61,0	70,0	diurno - notturno				
3	Perimetro - fronte dissalatore (porte chiuse)	20/04/2010	22.46-22.56	62,3	62,5	70,0	diurno - notturno				
4	S.S. Gela - Vittoria (fronte Isola 1/Isola 4)	20/04/2010	00.19-00.29	68,5	68,5	70,0	diurno - notturno				
5	Perimetro - tra Isola 4 e Isola 7	20/04/2010	23.09-23.19	66,9	67,0	70,0	diurno - notturno				
6	Perimetro - tra Isola 7 e Isola 10	20/04/2010	23.24-23.34	62,2	62,0	70,0	diurno - notturno				
7	Perimetro - fronte Isola 10	20/04/2010	23.40-23.50	65,5	65,5	70,0	diurno - notturno				
8	Perimetro - tra Isola 10 e Isola 14	21/04/2010	00.01-00.11	66,8	67,0	70,0	diurno - notturno				
9	Perimetro - tra Isola 14 e Isola 18	21/04/2010	00.15-00.25	60,2	60,0	70,0	diurno - notturno				
10	Perimetro - Ingresso "E"	21/04/2010	00.37-00.47	57,0	57,0	70,0	diurno - notturno				
11	Perimetro - tra Isola 21 e Isola 25	21/04/2010	00.52-01.02	46,0	46,0	70,0	diurno - notturno				
12	Perimetro - Angolo NE Isola 25	21/04/2010	01.08-01.18	42,5	42,5	70,0	diurno - notturno				
13	Angolo SE Nuovo parco carbone	21/04/2010	01.24-01.34	43,4	43,5	70,0	diurno - notturno				
14	Perimetro - Fronte ingresso campo prove	21/04/2010	01.44-01.54	50,2	50,0	70,0	diurno - notturno				
15	Perimetro - tra Isola 27 e Isola 28	21/04/2010	01.57-02.07	50,8	51,0	70,0	diurno - notturno				
16	Discarica, lato E	19/04/2010	23.05-23.15	37,2	37,0	70,0	diurno - notturno				
17	Perimetro - Isola 28 angolo SE	21/04/2010	02.09-02.19	48,1	48,0	70,0	diurno - notturno				
18	Perimetro - tra Isola 24 e Isola 28	21/04/2010	02.22-02.32	49,0	49,0	70,0	diurno - notturno				
19	Esterno perimetro - Isola 20 lato S	20/04/2010	00.02-00.12	52,2	52,0	70,0	diurno - notturno				
20	Esterno perimetro - Area torcia raffineria	19/04/2010	23.42-23.52	58,3	58,5	70,0	diurno - notturno				
21	Perimetro - Isola 6 lato S	21/04/2010	02.40-02.50	60,6	60,5	70,0	diurno - notturno				
22	Perimetro - Isola 3 lato SW	21/04/2010	02.53-03.03	60,5	60,5	70,0	diurno - notturno				
23	Perimetro - Ingresso "B"	21/04/2010	03.06-03.16	58,6	58,5	70,0	diurno - notturno				
24	Perimetro - Ingresso "A"	21/04/2010	03.19-03.29	56,7	56,5	70,0	diurno - notturno				
25	Strada - lato W raffineria	19/04/2010	02.24-02.34	61,4	61,5	70,0	diurno - notturno				
	DEPC	SITO CARBURAN	ITI - IMBOTTIGLI	AMENTO GPL							
26	Esterno deposito - Cancello a E ingresso	21/04/2010	10.17-10.27	67,9	68,0	70,0	diurno - notturno				
27	Esterno deposito - Angolo NE	21/04/2010	10.29-10.39	54,6	54,5	70,0	diurno - notturno				
28	Esterno deposito - Parcheggio lato E	21/04/2010	10.41-10.51	55,6	55,5	70,0	diurno - notturno				
29	Interno deposito - Angolo SE	21/04/2010	10.54-11.04	55,5	55,5	70,0	diurno - notturno				
30	Interno deposito - Manichetta antincendio	21/04/2010	11.06-11.16	58,2	58,0	70,0	diurno - notturno				
31	Interno deposito - Limite area Carburanti/GPL	21/04/2010	11.19-11.29	61,3	61,5	70,0	diurno - notturno				
32	Interno deposito - Presso porta su ferrovia	21/04/2010	11.45-11.55	65,3	65,5	70,0	diurno - notturno				
33	Interno deposito - Angolo SW	21/04/2010	12.07-12.17	65,1	65,0	70,0	diurno - notturno				
34	Esterno deposito - Angolo NW	21/04/2010	12.19-12.29	65,2	65,0	70,0	diurno - notturno				
35	Esterno deposito - Cancello a W ingresso	21/04/2010	12.30-12.40	66,1	60,0	70,0	diurno - notturno				
36	Esterno deposito - Ingresso stabilimento	21/04/2010	12.42-12.52	60,0	60,0	70,0	diurno - notturno				

^{*} In ottemperanza a quanto definito al capitolo 8 pagina 30 del PMC, nel corso del 2013 non sono intervenute variazioni impiantistiche talida comportare una variazione dell'impatto acustico della Raffineria nei confronti dell'ambiente esterno, pertanto sono validi i dati della campagna di misura dell'aprile 2010, qui riportate

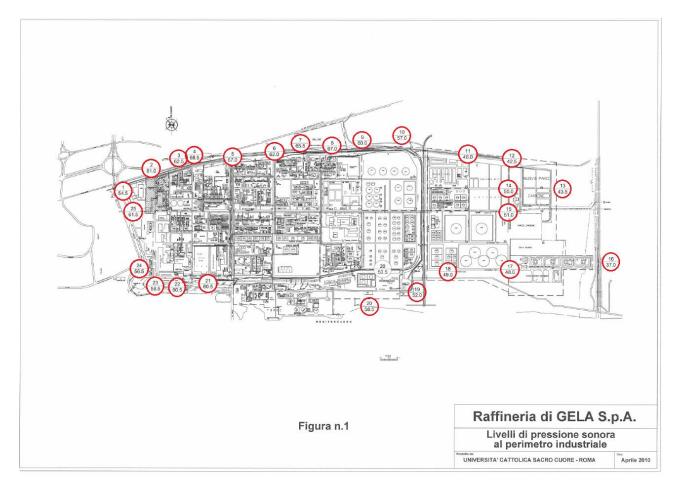


Figura 1 – Ubicazione punti rilievo – zona Raffineria

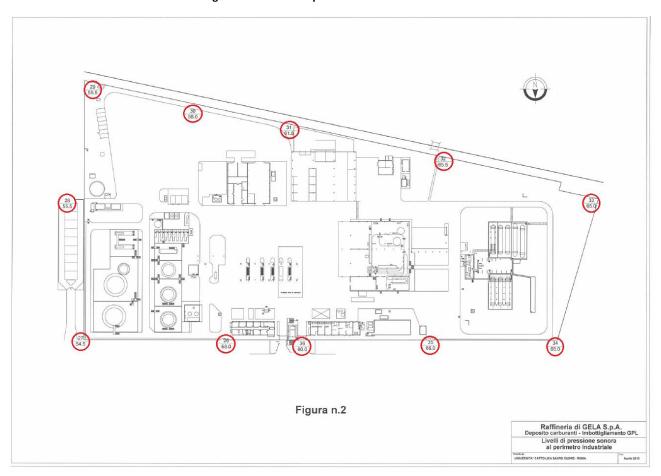


Figura 2 – Ubicazione punti rilievo – zona Deposito Carburanti/Imbottigliamento GPL

Allegato 5 Programma LDAR

Carrara S.p.A.

Report d'ispezione LDAR Raffineria di Gela S.p.A. Campagna di monitoraggio 2013

INDICE GENERALE

1.	Oggetto d'attività	Pag 3
2.	Descrizione dell'attività eseguita	Pag 5
3.	Metodologie di classificazione, di monitoraggio e di calcolo	Pag 9
4.	Elaborazione dei dati statistici dell'inventario monitorato	Pag 12
5.	Calcolo della stima emissiva	Pag 17
6.	Conclusione	Pag 20

1. Oggetto d'attività

Raffineria di Gela S.p.A., di seguito nominato il GESTORE, ha commissionato a Carrara S.p.A. Divisione FERP, di seguito nominata FERP, l'implementazione del programma LDAR presso le sue Unità produttive.

Le attività, svolte da FERP nel corso del 2013, sono consistite nelle operazioni di censimento e monitoraggio dei componenti di processo (di seguito nominati 'sorgenti' o 'componenti') appartenenti alle linee produttive delle Unità in oggetto.

Il monitoraggio estensivo, con tecnica EPA Method 21, dei componenti fisicamente accessibili è stato realizzato da FERP nei mesi da Settembre a Dicembre 2013 secondo le procedure e con l'ausilio di strumentazioni che di seguito saranno specificamente indicate.

Oggetto del seguente report è, dunque, la campagna ispettiva effettuata da FERP nel 2013.

La stima emissiva è stata ottenuta attraverso l'implementazione del protocollo EN15446:2008, derivante da EPA 453/95, utilizzando il modello delle "equazioni di correlazione" Petroleum Industries

La stima emissiva calcolata è relativa ai componenti effettivamente monitorati ed a quelli inventariati e non monitorati perché non raggiungibili ed è espressa in Kg/h e Ton/anno (8.760 h). In accordo con il Gestore la soglia di perdita (Leak Definition) è stata impostata a 10.000 ppmv. Dal computo emissivo verranno stornate 66.765 sorgenti in stato di non servizio durante la campagna ispettiva.

Il presente report è stato redatto in conformità alla sezione 8. Report della EN15446:2008 che prescrive:

- 1. Scope of the report (facility, type and size of equipment measured, streams, purpose, reporting period);
- 2. Results expressed in mass per year (indicating how the mass is specified; as reference compound equivalent, carbon equivalent, actual composition of emission);
- 3. Characteristic of instrument used;
- **4.** Response factor that have been used. In case are provided per concentration strata by the manufacturer, these values should be provided. Source of information for response factors, substances for which response factor is unknow shall be indicated;
- 5. Value of threshold concentration;
- 6. Which correlation is used;
- 7. Which pegged value is used;
- 8. Max. ppmv used in correlations;
- 9. Number of components measured during the reporting period;
- 10. Number of components measured during the previous period;
- 11. Number of components never measured;
- 12. Handling of equipment not measured;
- 13. Grouping of equipment in case average leak rates are derived from plant data

2. Descrizione dell'attività eseguita

L'attività è consistita nell'implementare la procedura LDAR presso le Unità produttive d'interesse al fine di:

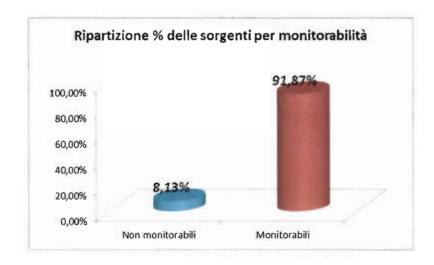
- inventariare e classificare le sorgenti per configurare il database di riferimento;
- accumulare per ogni sorgente raggiungibile una lettura secondo tecnica EPA Method 21;
- segnalare le sorgenti divergenti rispetto alla leak definition 1.000 ppmv perché il Gestore possa avviare su questi un'azione correttiva;
- contabilizzare le emissioni COV secondo le procedure EN15446:2008 sia in riferimento all'inventario monitorato che a quello censito e non monitorato.

Il censimento e la catalogazione hanno coinvolto tutti i componenti delle linee di processo che sono stati aggregati nei sette gruppi principali indicati dalla EN15446:2008: 1) Agitatori, 2) Compressori, 3) Pompe; 4) Valvole; 5) Valvole di sicurezza; 6) Flange; 7) Fine linea e nei sottogruppi GAS o LIGHT LIQUID (LL) a seconda della fase dello stream.

Le flange indistintamente aggregano flange di linea (piping), flange di apparecchiature (es. scambiatori di calore) o Bonnet Flange delle valvole.

L'ispezione è stata condotta presso 108.164 sorgenti monitorabili pari all' 91,87% delle sorgenti inventariate (117.731) in stato di effettivo servizio.

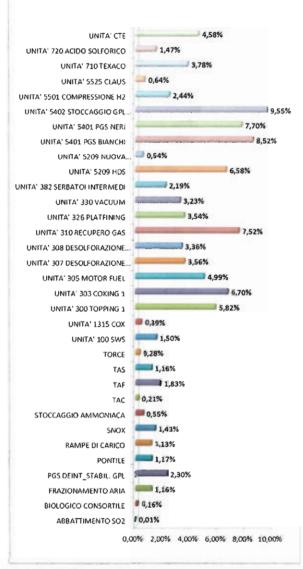
Alle restanti 9.567 sorgenti, isolate o non monitorabili perché non raggiungibili, è stato attribuito un fattore emissivo medio calcolato sulla base delle letture disponibili: ad ogni tipo di componente, per Unità d'appartenenza e per fase dello stream è stato assegnato il fattore medio calcolato sui medesimi componenti presso l'impianto.

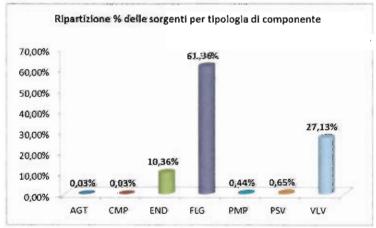


Inventario

Zona	AGT	CMP	END	FLG	PMP	PSV	VLV	Non monitorabili	Monitorabili	Totale
ABBATTIMENTO SO2				8			4	12		12
BIOLOGICO CONSORTILE			20	98	3		67		188	188
FRAZIONAMENTO ARJA		4	116	934		25	289	282	1.086	1.368
PGS DEINT_STABIL. GPL			119	1.981	23	44	536	70	2.633	2.703
PONTILE		1	158	809		8	406	65	1.317	1.382
RAMPE DI CARICO			156	785	4	11	377	51	1.282	1.333
SNOX	22	12	152	1.138	4	2	348	227	1.451	1.678
STOCCAGGIO AMMONIACA			41	431	2	5	170	47	602	649
TAC	1		24	149	5		68	13	234	247
TAF			185	1.384	26	5	556	139	2.017	2,156
TAS			175	823	21	2	341	120	1.242	1.362
TORCE			50	180			104	25	309	334
UNITA' 100 SWS			163	1.088	13	7	496	49	1.718	1.767
UNITA' 1315 COX			40	290	2	4	127	4	459	463
UNITA' 300 TOPPING 1			864	4.043	36	62	1.847	848	6.004	6.852
UNITA' 303 COKING 1			1.162	4.384	28	41	2.273	547	7.341	7.888
UNITA' 305 MOTOR FUEL		4	944	3.036	25	26	1.836	346	5.525	5.871
UNITA' 307 DESOLFORAZIONE GASOLIO		2	530	2.417	12	43	1.191	507	3.688	4.195
UNITA' 308 DESOLFORAZIONE FLUSSANTE		2	443	2.226	12	13	1.265	502	3.459	3.961
UNITA' 310 RECUPERO GAS			919	5.190	46	65	2.628	1.129	7.719	8.848
UNITA' 326 PLATFINING		3	541	2.407	20	41	1.160	184	3.988	4.172
UNITA' 330 VACUUM			460	2.235	23	21	1.069	350	3.458	3.808
UNITA' 382 SERBATOI INTERMEDI			226	1.664	3	7	674	2	2.572	2.574
UNITA' 5209 HDS		3	962	4.458	17	44	2.258	992	6.750	7.742
UNITA' 5209 NUOVA PURIFICAZIONE H2			130	277		5	218	60	570	630
UNITA' 5401 PGS BIANCHI			742	6.812	54	3	2.422	324	9.709	10.033
UNITA' 5401 PGS NERI			522	6.344	47	7	2.151	560	8.511	9.071
Unita' 5402 Stoccaggo GPL Isola 22		9	931	7.197	32	175	2.902	456	10.790	11.246
UNITA' 5501 COMPRESSIONE H2		1	286	1.924		58	602	274	2.597	2.871
UNITA' 5525 CLAUS			77	447	4	2	226	180	576 .	756
UNITA' 710 TEXACO			419	2.717	22	17	1.276	459	3.992	4.451
UNITA' 720 ACIDO SOLFORICO			169	1.128	13	3	416	331	1.398	1.729
UNITA' CTE	12		473	3.230	20	17	1.639	412	4.979	5.391
Totale	35	41	12.199	72.234	517	763	31.942	9.567	108.164	117.731

AGT: Agitatori; CMP: Compressori; END: Fine linea; FLG: Flange; PMP: Pompe; PSV: Valvole sicurezza; VLV: Valvole.


Di seguito sono osservabili le distribuzioni percentuale delle sorgenti per monitorabilità, per Unità, e per tipologia di componente.



Ripartizione % delle sorgenti per Unità

AGT: Agitatori; CMP: Compressori; END: Fine linea; FLG: Flange; PMP: Pompe; PSV: Valvole sicurezza; VLV: Valvole.

L'inventario dei punti comprende gli streams Idrogeno (4.605 sorgenti) ed ammoniaca (661 sorgenti) che verranno trattati a parte.

La classificazione dei punti componente, disaggregati rispetto agli streams metano e Idrogeno, risulta essere la seguente:

Punti componente interessati da COV (Composti organici Volatili)

Componente	Non Monitorabili	Monitorabili	Totale
AGT	7	28	35
CMP	3	30	33
END	768	10.901	11.669
FLG	6.243	62.727	68.970
PMP	9	506	515
PSV	116	574	690
VLV	1.708	28.845	30.553
Totale	8.854	103.611	112.465

AGT: Agitatori; CMP: Compressori; END: Fine linea; FLG: Flange; PMP: Pompe, PSV: Valvole di Sicurezza; VLV: Valvole

Punti componente interessati da ammoniaca

Componente	Non Monitorabili	Monitorabili	Totale
END		41	41
FLG	43	396	439
PMP		2	2
PSV		5	5
VLV	16	158	174
Totale	59	602	661

END: Fine linea; FLG: Flange; PMP: Pompe, PSV: Valvole di Sicurezza; VLV: Valvole

Punti componente interessati da idrogeno

Componente	Non Monitorabili	Monitorabili	Totale
CMP	1	7	8
END	70	419	489
FLG	423	2.402	2.825
PSV	28	40	68
VLV	132	1.083	1.215
Totale	654	3.951	4.605

CMP: Compressori; END: Fine linea; FLG: Flange; PSV: Valvole di Sicurezza; VLV: Valvole

3. Metodologie di classificazione, di monitoraggio e di calcolo

Il metodo impiegato poggia sull'implementazione rigorosa della procedura descritta nel protocollo EPA 453/95, a cui si rimanda per i dettagli, che prevede, dapprima, la compilazione di un inventario (database) dei componenti, classificandoli per tipo, per fase del fluido, per tipo di fluido, localizzandoli all'interno di un'identificabile linea di processo o di un P&I: ogni componente è pertanto univocamente determinato con un TAG ID.

Successivamente i componenti vengono aggregati in gruppi per costituire degli itinerari di monitoraggio.

Un itinerario aggrega componenti che per vicinanza fisica od omogeneità tecnica all'interno del processo rappresentano di fatto un assieme. In ogni caso l'itinerario esprime l'insieme e determina la sequenza obbligatoria di monitoraggio od "acquisizione puntuale di dato" per il settore in esame. Tale rigorosa routine è stato adottata per impedire un trattamento manuale dei dati acquisti o discrezionalità da parte dell'operatore che fisicamente esegue il monitoraggio. I dati acquisiti all'interno di un itinerario vengono accumulati nella ROM del COV Analyzer e solo al termine trasferiti al database che provvede ad allocarli ai componenti di riferimento.

Quando tutti i dati sono allocati essi vengono elaborati per calcolare la stima emissiva.

Le sorgenti divergenti rispetto al Leak Definition vengono segnalate per iscritto al Gestore al termine di ogni turno giornaliero di monitoraggio.

Tutti i componenti sono univocamente identificati. Pertanto ad ogni successivo monitoraggio relativo all'i-esimo componente si accumulerà un dato che sarà confrontabile con il precedente.

L'intento della procedura testé descritta è completamente volta a garantire tanto la correttezza tanto la preservazione nel tempo dei dati raccolti. La rigorosa tecnica di gestione e trattamento dei dati è assolutamente fondamentale per garantire una veridicità della stima emessa al termine delle campagne di ispezione. Le emissioni fuggitive sono state misurate in accordo con tecnica EPA metodo 21 (Environmental Protection Agency M.21) titolato "Determinazione delle perdite dei composti organici volatili".

Preliminarmente alle misurazioni, l'operatore ha compiuto giornalmente le seguenti attività:

- caricamento dell'itinerario di misurazione nella ROM dell'analizzatore;
- misurazione del "rumore di fondo" in ciascuna sezione dell'impianto da sottrarsi al valore rilevato sul componente; la lettura che appare sul display è già depurata.
- misurazioni in loco e raccolta delle concentrazioni dei COV in ppmv per ciascun punto emissivo, in accordo con EPA metodo 21;
- trasferimento dei dati dallo strumento di acquisizione dati al computer centrale.

Le misurazioni dell'emissioni sono state realizzate con un analizzatore a "ionizzazione di fiamma" portatile Thermo ENV. TVA 1000B, equipaggiato con computer di bordo. L'intervallo globale delle misurazioni appartiene al range da 0.00 ppmv a 100.000 ppmv, consentendo pertanto che i livelli di emissione vengano caratterizzati in modo accurato e che le perdite siano identificate.

Le misurazioni sono state rilevate al netto del "rumore di fondo" (valore in ppmv misurato dallo strumento nei camminamenti nell'intorno delle linee di processo) che si è attestato invariabilmente nel range $0.11 \div 1.34$ ppmv.

Con gli RFm (fattori di risposta) basati sulla Leak Definition 500 e 10.000 di ciascuno stream, come indicato dal manuale dello strumento Thermo ENV, sono stati calcolati i fattori A e B della curva di risposta del Thermo ENV. TVA 1000 B.

La curva di risposta restituisce il fattore di risposta della macchina allo stream con continuità all'interno di tutto il range di lettura 0 ÷ 100.000:

Response Curve

Response factors can change as concentration changes. The response factor for a compound determined at 500 ppm may not be the same as the response factor determined at 10,000 ppm. By using a *response curre*, you can characterize a compounds response over a broader range of concentrations. If the actual concentration is plotted as Yvs. X (measured concentration), the resulting curve can be represented by the rational equation

$$Y = \frac{AX}{\left(1 + \frac{BX}{10000 \text{ppm}}\right)}$$

Per le sostanze singole non appartenenti alla lista del manuale Thermo ENV, è stato utilizzato il valore RF500 = 1 e RF10.000 = 1 come previsto dalla EN15446:2008.

Per ciascuno stream è stata definita la curva di correzione (SVA Screened Value Adjusted) ove Xi è la lettura bruta accumulata con il FID.

$$SVA = ((A*Xi)/(1+(B*Xi/10.000))$$

La curva rilascia il valore "aggiustato" SVA lungo tutto il range 0 ÷ 100.000 ppmv.

Le letture sono state accumulate tra l' 11 ed il 15 Aprile 2013 in condizioni meteorologiche ottimali.

In relazione alla modalità contabile, sono state utilizzate le equazioni di correlazione della EN15446:2008 che sono riportate di seguito.

Le letture, corrette con il fattore di risposta, sono state elaborate con le equazioni di correlazione:

$$Kg/h = A \times (SVA)^{\wedge B}$$

ove i fattori A e B sono acquisiti dalla tabella:

Table C.2 - US EPA Petroleum Industry correlation parameters and factors

Source	Service	Ā	В	Pegged value at 10.000 ppm (kg/h)	Pegged value at 100.000 ppm (kg/h)	Average factor (kg/h)	Average factor for Marketing Terminal Equipment
Valve	Gas	2,29 x 10 ⁻⁶	0.746	0.064	0.140	0.0268	(kg/h)
70110	Obs	2,23 % 10	0,140	0,004	0,140	0.0200	0,0000,0
Valve	Light liquid	2,29 x 10 ⁴	0,746	0.064	0,140	0.0109	0,000043
Pump seal	ĀĪI	5,03 x 10 ⁻⁵	0,610	0,074	0,160	0,114	0,00054
Connector	All	1,53 x 10°	0,735	0,028	0,030	0,00025	0,000042
Flange	Ail	4,61 x 10 ⁻⁶	0,703	0,085	0,084	0,00025	0,000042
Open end	All	2,20 x 10°	0.704	0,030	0,079	0,0023	0,00013
Other?)	All	1,36 x 10°	0,589	0,073	0,110	see below	0,00013

Additional average emission factors are available for the following components:

compressor seals (gas service):

0,636 kg/h

relief valves (gas service):

0,160 kg/h

sampling connections (all services):

0,015 kg/h

4. Elaborazione dei dati statistici dell'inventario monitorato

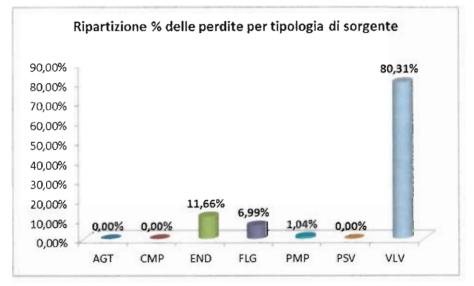
LEAK DEFINITION 10.000 ppmv – Viene riportato in questa sezione il punteggio maturato (Leak Frequency) presso ciascun gruppo di sorgenti e ciascuna fase rispetto alla soglia di attenzione (Leak Definition) di 10.000 ppmv. Si intende per punteggio il quoziente tra il numero di sorgenti divergenti ed il totale delle sorgenti ispezionate.

Le sorgenti di gas idrogeno matureranno un punteggio di Leak Frequency a parte, in quanto per esse è possibile una stima qualitativa (Leak – No Leak) e non quantitativa.

Si rileva che l'indice di divergenza (Leak Frequency) per le sorgenti di COV ed ammoniaca, si è attestato allo 0,37%% (386 vs 104.213).

Di seguito il riepilogo delle divergenze riscontrate per Unità e per tipologia di componente.

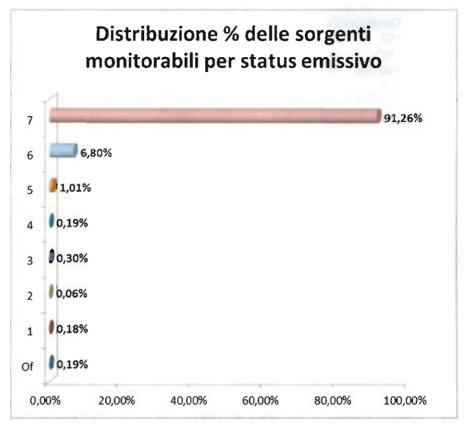
Unità	0	1	Totale	Divergenza %
BIOLOGICO CONSORTILE	188		188	0,00%
FRAZIONAMENTO ARIA	1.086		1.086	0,00%
PGS DEINT_STABIL. GPL	2.626	7	2.633	0,27%
PONTILE	1.315	2	1.317	0,15%
RAMPE DI CARICO	1.273	9	1.282	0,70%
SNOX	1.451		1.451	0,00%
STOCCAGGIO AMMONIACA	602		602	0,00%
TAC	234		234	0,00%
TAF	2.017		2.017	0,00%
TAS	1.242		1.242	0,00%
TORCE	305	4	309	1,29%
UNITA' 100 SWS	1.718		1.718	0,00%
UNITA' 1315 COX	459		459	0,00%
UNITA' 300 TOPPING 1	6.002	2	6.004	0,03%
UNITA' 303 COKING 1	7.340	1	7.341	0,01%
UNITA' 305 MOTOR FUEL	4.620	24	4.644	0,52%
UNITA' 307 DESOLFORAZIONE GASOLIO	3.577	2	3.579	0,06%
UNITA' 308 DESOLFORAZIONE FLUSSANTE	2.879		2.879	0,00%
UNITA' 310 RECUPERO GAS	7.568	19	7.587	0,25%
UNITA' 326 PLATFINING	3.940	10	3.950	0,25%
UNITA' 330 VACUUM	3.456	2	3.458	0,06%
UNITA' 382 SERBATOI INTERMEDI	2.571	1	2.572	0,04%
UNITA' 5209 HDS	6.345	10	6.355	0,16%
UNITA' 5209 NUOVA PURIFICAZIONE H2	214	2	216	0,93%
UNITA' 5401 PGS BIANCHI	9.682	27	9.709	0,28%
UNITA' 5401 PGS NERI	8.511		8.511	0,00%
UNITA' 5402 STOCCAGGIO GPL ISOLA 22	10.550	240	10.790	2,22%
UNITA' 5501 COMPRESSIONE H2	1.132	3	1.135	0,26%
UNITA' 5525 CLAUS	575	1	576	0,17%
UNITA' 710 TEXACO	3.977	15	3.992	0,38%
UNITA' 720 ACIDO SOLFORICO	1.397	1	1.398	0,07%
UNITA' CTE	4.975	4	4.979	0,08%
Totale	103.827	386	104.213	0,37%


Status 0: ppmv < 10.000; Status 1: ppmv > 10.000

Componente	0	1	Totale	Divergenza %
AGT	28		28	0,00%
CMP	30		30	0,00%
END	10.897	45	10.942	0,41%
FLG	63.096	27	63.123	0,04%
PMP	504	4	508	0,79%
PSV	579		579	0,00%
VLV	28.693	310	29.003	1,07%
Totale	103.827	386	104.213	0,37%

AGT: Agitatori; CMP: Compressori; END: Fine linea; FLG: Flange; PMP: Pompe, PSV: Valvole di Sicurezza; VLV: Valvole Status 0: ppmv < 1.000; Status 1: ppmv > 1.000

AGT: Agitatori; CMP: Compressori; END: Fine linea; FLG: Flange; PMP: Pompe, PSV: Valvole di Sicurezza; VLV: Valvole


Nelle tabelle successive è possibile verificare la dinamica del comportamento dei componenti monitorati, interessati da COV ed ammoniaca, in modo più dettagliato:

Componente	Of	1	2	3	4	5	6	7	Totale
AGT								28	28
CMP					1	2	3	24	30
END	21	24	12	40	22	96	732	9.995	10.942
FLG	13	14	10	45	50	478	4.321	58.192	63.123
PMP	2	2	2	10	3	17	46	426	508
PSV				1		8	52	518	579
VLV	158	152	36	216	125	453	1.937	25.926	29.003
Totale	194	192	60	312	201	1.054	7.091	95.109	104.213

AGT: Agitatori; CMP: Compressori; END: Fine linea; FLG: Flange; PMP: Pompe, PSV: Valvole di Sicurezza; VLV: Valvole

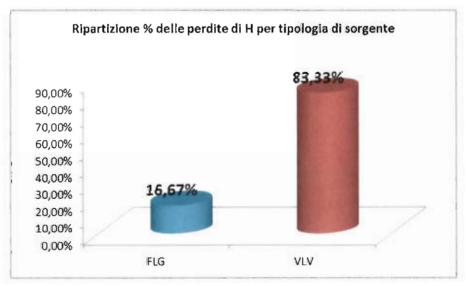
I ranges emissivi sono stati classificati in 8 gruppi, da ppmv > 100.000 a 0 secondo la seguente legenda:

Status	Component ppmv range
Of	Overflow ppmv > 100.000
1	10.000 < ppmv < 99.999
2	5.000 < ppmv < 9.999
3	1.000 < ppmv < 4.999
4	500 < ppmv < 999
5	100 < ppmv < 499
6	10 < ppmv < 99
7	ppmv < 10

Osservando le distribuzioni emissive emerge che tra i componenti divergenti rispetto alla Leak Definition di 10.000 ppmv, 194, pari al 50,26% del totale di 386, sono stati rilevati in stato di Overflow strumentale (ppmv>100.000).

L'inventario dei punti componente, interessati da idrogeno e per i quali è possibile solo un'analisi di tipo Leak-no Leak, presso gli Impianti del Gestore è stato classificato come segue:

Punti componente interessati da idrogeno


Componente	Non Monitorabili	Monitorabili	Totale
CMP	1	7	8
END	70	41 9	489
FLG	423	2.402	2.825
PSV	28	40	68
VLV	132	1.083	1.215
Totale	654	3.951	4.605

CMP: Compressori; END: Fine linea; FLG: Flange; PSV: Valvole di Sicurezza; VLV: Valvole

I risultati ispettivi hanno portato alla seguente distribuzione di divergenza rispetto al monitorato:

Componente	0	1	Totale	Divergenza %
CMP	7		7	0,00%
END	419		419	0,00%
FLG	2.400	2	2.402	0,08%
PSV	40		40	0,00%
VLV	1.073	10	1.083	0,92%
Totale	3.939	12	3.951	0,30%

CMP: Compressori; END: Fine linea; FLG: Flange; PSV: Valvole di Sicurezza; VLV: Valvole Status 0 = No Leak; Status 1 = Leak.

FLG: Flange; VLV: Valvole

Le letture sono state raccolte nei giorni tra il 10 di Settembre ed il 12 di Dicembre 2013, in condizioni meteo ottimali, di seguito il riepilogo

Data	Nr. Letture	Data	Nr. Letture
10/09/2013	2.682	05/11/2013	1.344
11/09/2013	3.315	06/11/2013	1.702
12/09/2013	3.720	07/11/2013	1.326
13/09/2013	1.913	08/11/2013	1.539
16/09/2013	3.159	09/11/2013	2.082
17/09/2013	3.713	11/11/2013	3.023
18/09/2013	3.706	12/11/2013	2.285
19/09/2013	2.411	13/11/2013	3.975
24/09/2013	1.576	14/11/2013	2.722
25/09/2013	2.394	19/1 1 /2013	2.077
26/09/2013	2.218	20/11/2013	4.188
27/09/2013	1.411	21/11/2013	1.758
30/09/2013	1.698	22/11/2013	2.301
01/10/2013	1.828	23/11/2013	578
02/10/2013	2.466	25/11/2013	1.167
03/10/2013	2.633	26/11/2013	1.818
08/10/2013	995	27/11/2013	1.792
09/10/2013	2.100	28/11/2013	748
10/10/2013	1.884	03/12/2013	1.405
11/10/2013	1.282	04/12/2013	1.958
22/10/2013	713	05/12/2013	1.997
23/10/2013	1.551	06/12/2013	1.210
24/10/2013	1.424	07/12/2013	771
25/10/2013	1.034	10/12/2013	1.930
28/10/2013	1.192	11/12/2013	4.805
29/10/2013	1.190	12/12/2013	2.956
30/10/2013	499	Totale	108.164

Il rumore di fondo registrato durante le operazioni ispettive si è registrato nell'intervallo tra gli 0,11 ppmv e gli 1,34 ppmv.

5. Calcolo della stima emissiva

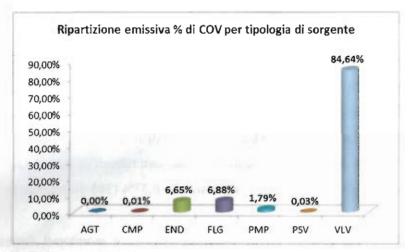
In relazione alla contabilità emissiva si riepiloga brevemente la modalità contabile utilizzata. Sono state utilizzate le equazioni di correlazione di cui all'allegato C della EN 15446, Tabella C2 – US EPA Petroleum Industries correlation parameters and factors. Il valore di Overflow utilizzato è riferito a 100.000 ppmv (lo strumento di rilevazione Thermo ENV. TVA 1000B copre il range 0 ÷ 100.000 ppmv). Per letture pari a 0 ppmv sono stati attribuiti i valori emissivi tabellari di default secondo EPA 453/95.

I fattori medi calcolati presso l'inventario monitorato e successivamente attribuiti ai componenti non monitorabili perché fisicamente non raggiungibili suddivisi per macroarea d'appartenenza (SOI), tipologia di sorgente e fase dello stream, sono stati i seguenti:

SOI/Componente/Fase	Kg/h x Componente	SOI/Componente/Fase	Kg/h x Componente
SOI 1 END Gas	1,5255E-04	SOI 3 END LL	4,0797E-04
SOI 1 END LL	3,1520E-05	SOI 3 FLG Gas	3,1839E-04
SOI 1 FLG Gas	5,8157E-05	SOI 3 FLG LL	3,3089E-05
SOI 1 FLG LL	8,6215E-06	SOI 3 PMP LL	2,7305E-03
SOI 1 PMP LL	1,6178E-04	SOI 3 PSV Gas	3,2872E-05
SOI 1 PSV Gas	5,9131E-06	SOI 3 PSV LL	2,3710E-05
SOI 1 PSV LL	6,5313E-06	SOI 3 VLV Gas	1,6298E-02
SOI 1 VLV Gas	5,2575E-04	SOI 3 VLV LL	1,3332E-03
SOI 1 VLV LL	1,9387E-04	SOI 4 AGT Gas	3,3014E-05
SOI 2 CMP Gas	1,9317E-04	SOI 4 CMP Gas	5,1621E-05
SOI 2 END Gas	7,1771E-05	SOI 4 END Gas	1,3041E-04
SOI 2 END LL	5,2992E-05	SOI 4 END LL	1,8737E-04
SOI 2 FLG Gas	6,2976E-05	SOI 4 FLG Gas	1,0571E-05
SOI 2 FLG LL	2,2416E-05	SOI 4 FLG LL	8,7400E-06
SOI 2 PSV Gas	8,5126E-06	SOI 4 PMP LL	1,1016E-04
SOI 2 PSV LL	1,3263E-05	SOI 4 PSV Gas	7,0090E-06
SOI 2 VLV Gas	9,2826E-04	SOI 4 PSV LL	7,8500E-06
SOI 2 VLV LL	1,5288E-04	SOI 4 VLV Gas	2,4597E-04
SOI 3 CMP Gas	1,6929E-04	SOI 4 VLV LL	4,5713E-04
SOI 3 END Gas	1,1750E-03		
		A CONTRACTOR OF THE PERSON OF	

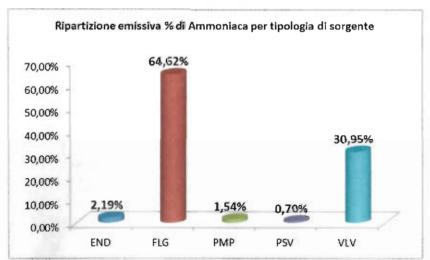
AGT: Agitatori; CMP: Compressori; END: Fine linea; FLG: Flange; PMP: Pompe, PSV: Valvole di Sicurezza; VLV: Valvole GAS: fase Gas; LL: fase Liquida

L'emissione oraria ed annua di COV attribuita all'intero inventario in stato di effettivo servizio escluse le sorgenti di Idrogeno ed Ammoniaca, ipotizzando un servizio annuo generale di 8.760 ore, ripartita per Unità e per tipologia di componente è stata la seguente:


Zona	Nr. sorgennti	Kg/h COV	Ton/anno COV
BIOLOGICO CONSORTILE	188	0,0010	0,0090
FRAZIONAMENTO ARIA	1.368	0,0243	0,2132
PGS DEINT_STABIL. GPL	2.703	0,3101	2,7163
PONTILE	1.382	0,1782	1,5613
RAMPE DI CARICO	1.333	0,2346	2,0549
SNOX	1.678	0,0365	0,3202
TAC	247	0,0030	0,0262
TAF	2.156	0,0437	0,3831
TAS	1.362	0,0474	0,4156
TORCE	334	0,2965	2,5973
UNITA' 100 SWS	1.767	0,0140	0,1226
UNITA' 1315 COX	463	0,0023	0,0200
UNITA' 300 TOPPING 1	6.852	0,2239	1,9609
UNITA' 303 COKING 1	7.888	0,2072	1,8147
UNITA' 305 MOTOR FUEL	4.873	0,6038	5,2889
UNITA' 307 DESOLFORAZIONE GASOLIO	4.084	0,3462	3,0328
UNITA' 308 DESOLFORAZIONE FLUSSANTE	3.195	0,0464	0,4065
UNITA' 310 RECUPERO GAS	8.700	1,4560	12,7545
UNITA' 326 PLATFINING	4.134	0,7321	6,4135
UNITA' 330 VACUUM	3.808	0,2698	2,3634
UNITA' 382 SERBATOI INTERMEDI	2.57 4	0,0396	0,3466
UNITA' 5209 HDS	7.296	0,9136	8,0030
UNITA' 5209 NUOVA PURIFICAZIONE H2	237	0,2270	1,9887
UNITA' 5401 PGS BIANCHI	10.033	0,7896	6,9168
UNITA' 5401 PGS NERI	9.071	0,2536	2,2219
UNITA' 5402 STOCCAGGIO GPL ISOLA 22	11.246	19,4730	170,5832
UNITA' 5501 COMPRESSIONE H2	1.166	0,4352	3,8123
UNITA' 5525 CLAUS	756	0,1616	1,4154
UNITA' 710 TEXACO	4.451	1,3880	12,1587
UNITA' 720 ACIDO SOLFORICO	1.729	0,1700	1 ,4 889
UNITA' CTE	5.391	0,2726	2,3883
Totale	112.465	29,2008	255,7987

Componente	Nr. sorgennti	Kg/h COV	Ton/anno COV
AGT	35	0,0009	0,0080
CMP	33	0,0026	0,0230
END	11.669	1,9408	17,0017
FLG	68.970	2,0102	17,6096
PMP	515	0,5218	4,5707
PSV	690	0,0094	0,0822
VLV	30.553	24,7150	216,5036
Totale	112.465	29,2008	255,7987

AGT: Agitatori; CMP: Compressori; END: Fine linea; FLG: Flange; PMP: Pompe, PSV: Valvole di Sicurezza; VLV: Valvole



AGT: Agitatori; CMP: Compressori; END: Fine linea; FLG: Flange; PMP: Pompe, PSV: Valvole di Sicurezza; VLV: Valvole

L'emissione oraria ed annua di ammoniaca, suddivisa per tipologia di sorgente, risulta essere la seguente:

Componente	Nr. sorgennti	Kg/h COV	Ton/anno COV
END	41	0,0016	0,0142
FLG	439	0,0477	0,4181
PMP	2	0,0011	0,0100
PSV	5	0,0005	0,0045
VLV	174	0,0229	0,2002
Totale	661	0,0739	0,6470

END: Fine linea; FLG: Flange; PMP: Pompe, PSV: Valvole di Sicurezza; VLV: Valvole

END: Fine linea; FLG: Flange; PMP: Pompe, PSV: Valvole di Sicurezza; VLV: Valvole

6. Conclusione

L'ispezione condotta presso 108.164 componenti monitorabili, pari al 91,87% dell'intero inventario censito, in stato di effettivo servizio, in 117.731 sorgenti, per le Unità produttive del Gestore, ha portato all'individuazione di 398 perdite.

Tra i componenti divergenti rispetto alla Leak Definition di 10.000 ppmv /sorgenti di COV ed ammoniaca), 194, pari al 50,26% del totale di 386, sono stati rilevati in stato di Overflow (ppmv > 100.000) e la Leak frequency di gruppo si è attestata allo 0,37% (386 divergenze vs 104.213 letture).

L'emissione di COV dei componenti in esercizio, censiti e monitorati durante la campagna ispettiva, è stata computata in circa 29,20 Kg/h COV che per un servizio annuo di 8.760 ore corrisponde a circa 255,80 Tonnellate/anno COV.

L'Unità che maggiormente contribuisce all'emissione di COV risulta essere la 5402 STOCCAGGIO GPL Isola 22 con 19,47 Kg/h di COV pari al 66,68% del totale.

La famiglia di componenti maggiormente responsabile dell'emissione di COV risulta essere quella delle valvole con 24,72 Kg/h di COV pari al 84,64% del totale.

L'emissione di ammoniaca è stata computata in circa 0,07 Kg/h che per un servizio annuo di 8.760 ore corrisponde a circa 0,65 Tonnellate/anno.

L'ispezione condotta presso le sorgenti di gas idrogeno ha portato all'individuazione di 12 perdite corrispondenti allo 0,30% del totale di 3.951 componenti monitorate.

Restando a disposizione per ogni ragguaglio od integrazione, l'occasione è gradita per porgere distinti saluti.

Adro 20-12-2013

Cordialmente Carrara Spa Ing. F.Apuzzo CARRARA CDA MERIUMBIA 191 2010 ADRO Gresch

Allegato 6

Programma per il contenimento degli odori

	Anno 2013						
	Indagini olfattometria dinamica						
Codice campione	Posizione di campionamento	Data campionamento	Modalità campionamento ¹	Concentrazione odore (ou _E /m³)			
Campagna del	03/06/2013 (rapporto di prova n. 294/13 del 28/06/2013)	l .	l l	, _ ,			
130303SBA01	Zona TAS - Macro Area - AA - Fronte vasche terminali	03/06/2013	AA	5500			
130303SBA02	Pozzetto P13	03/06/2013	AA	26000			
130303SBA03	Vasche terminali (pelo libero refluo)	03/06/2013	AA	3600			
130303SBA04	Vasca di equalizzazione	03/06/2013	AA AA	4900 2600			
130303SBA05 130303SBA06	Vasca percolatore biologico a placche Vasca biologico oxi-denitro (reflui industriali)	03/06/2013 03/06/2013	AA	110			
130303SBA07	Vasca biologico oxi-denitro (reflui urbani)	03/06/2013	AA	140			
130303SBA08	Sona impianto di depurazione - Macro area	03/06/2013	AA	54			
130303SBA09	Vasca d'accumulo reflui urbani	03/06/2013	AA	970			
130303SBA10	Macro area - Torce	03/06/2013	AA	64			
130303SBA11	Cassone stoccaggio fango disidratato	03/06/2013	AA	68			
130303SBA12	macro area - Pontile	03/06/2013	AA	23			
130303SBA13 130303SBA14	Testata pontile - durante fase di scarico Pontiletto	03/06/2013 03/06/2013	AA AA	26 38			
130303SBA14	Macro area - Zona TAF - Area a filtri a carboni attivi	03/06/2013	AA	30			
130303SBA16	Emissione filtro a carboni attivi - Zona TAF	03/06/2013	AA	430			
130303SBA17	Macro area impianto SVS - COX	03/06/2013	AA	170			
130303SBA18	Zona colonna SWS	03/06/2013	AA	57			
130303SBA19	Zona COX	03/06/2013	AA	72			
130303SBA20	Blow down - Isola 7 - Nord	03/06/2013	AA	86			
130303SBA21	Maro area - Discarica in post-gestione	03/06/2013	AA	81			
130303SBA22 130303SBA23	Vasca Gibellato - drenaggio serbatoi Macro area - Zona sfere GPL	03/06/2013 03/06/2013	AA AA	170 64			
130303SBA23	Blow down - Isola 7 - Sud	03/06/2013	AA	72			
130303SBA25	Area neri - Serbatoio 12 Greggio - in svuotamento	03/06/2013	AA	81			
130303SBA26	Macro area serbatoi - Area neri	03/06/2013	AA	68			
130303SBA27	Area bianchi - Serbatoio 957 - Virgin Nafta - in svuotamento	03/06/2013	AA	57			
130303SBA28	Macro area serbatoi - Area bianchi	03/06/2013	AA	64			
130303SBA29	Serbatoio S91 - gasolio leggero saturo ed insaturo	03/06/2013	AA	64			
130303SBA30	Serbatoio S85 - Benzina da coking	03/06/2013	AA	300			
130303SBA31 130303SBA32	Macro area - Isola 8-12 - semilavorati Macro area - Cocking 1-2	03/06/2013 03/06/2013	AA AA	110 51			
130303SBA32	Macro area - Claus	03/06/2013	AA	110			
130303SBA34	Vasca acque di scarico camere coke	03/06/2013	AA	86			
	to del 04/06/2013 (rapporto di prova n. 295/13 del 28/06/2						
130304SBA01	Isola 8 - Camino DF - fuel-gas	04/06/2013	AA	64			
130304SBA02	Isola 7 - Nord - Cocking 1	04/06/2013	AA	29			
130304SBA03	Camino d'espulsione CTE - Caminio 1 caldaia 100	04/06/2013	FP	40			
130304SBA04	Camino d'espulsione CTE - Caminio 4 caldaia 500	04/06/2013	FP	170			
	to del 12/09/2013 (rapporto di prova n. 526/13 del 14/10/2		T				
130912ZZC01	Vasca di equalizzazione	12/09/2013	AA	2400			
130912ZZC02 130912ZZC03	Vasca d'accumulo reflui urbani Vasca percolatore biologico a placche	12/09/2013 12/09/2013	AA AA	2300 8200			
130912ZZC03	Vasca biologico oxi-denitro (reflui urbani)	12/09/2013	AA	320			
130912ZZC05	Vasca biologico oxi-denitro (reflui industriali)	12/09/2013	AA	81			
130912ZZC06	Vasche terminali (pelo libero refluo)	12/09/2013	AA	8700			
130912ZZC07	Pozzetto P13	12/09/2013	AA	55000			
130912ZZC08	Zona TAS - Macro Area - AA - Fronte vasche terminali	12/09/2013	AA	860			
130912ZZC09	Macro area impianto SVS - COX	12/09/2013	AA	160			
130912ZZC10 130912ZZC11	Blow down - Isola 7 - Nord Blow down - Isola 7 - Sud	12/09/2013 12/09/2013	AA AA	38 57			
130912ZZC11	Vasca acque di scarico camere coke	12/09/2013	AA	110			
130912ZZC13	Emissione filtro a carboni attivi - Zona TAF	12/09/2013	AA	160			
130912ZZC14	Area neri - S102 - Greggio in svuotamento	12/09/2013	AA	110			
130912ZZC15	Vasca Gibellato - drenaggio serbatoi	12/09/2013	AA	150			
130912ZZC16	Area bianchi - Serbatoio 957 - Virgin Nafta - in svuotamento	12/09/2013	AA	96			
130912ZZC17	Macro area - Isola 8-12 - semilavorati	12/09/2013	AA	91			
130912ZZC18	Serbatoio S85 - Benzina da coking	12/09/2013	AA	1000			
130912ZZC19	Filtropressa trattamento TAS -TAC CTE	12/09/2013	AA	72			

¹ AA: Campionmanto di aria ambiente o da sorgente fuggitiva FP: Campionmanto di flusso convogliato puntiforme

	Anno 2013					
	Speciazione chimic	ca aria ambiente				
Campione	Posizione di campionamento	Data campionamento	SOV (μg/m³)	Mercaptani (μg/m³)	H ₂ S (mg/m ³)	
Campagna	del 12/09/2013 - Rapporti di prova n. 2110871-001/012	del 23/09/2013				
1	Zona TAS - Macro Area - AA - Fronte vasche terminali	12/09/2013	< 1	< 1	0,8	
2	Vasca percolatore biologico a placche	12/09/2013	66	< 1	0,7	
3	Vasca di equalizzazione	12/09/2013	< 1	< 1	< 0,3	
4	Isola 7 Nord - Blow down	12/09/2013	< 1	< 1	< 0,3	
5	Vasca acque di scarico camera coke	12/09/2013	< 1	< 1	< 0,3	
6	Macro area - Zona TAF	12/09/2013	< 1	< 1	0,4	
7	Area neri - Serbatoio 102 - greggio - in svuotamento	12/09/2013	< 1	< 1	< 0,3	
8	Vasca Gibellato - drenaggio serbatoi	12/09/2013	< 1	< 1	< 0,3	
9	Area bianchi - Serbatoio 957 - Virgin Nafta - in svuotamento	12/09/2013	< 1	< 1	< 0,3	
10	Serbatoio S85 - Benzina da coking	12/09/2013	98	< 1	< 0,3	
11	Macro area - Isola 8-12 - semilavorati	12/09/2013	102	< 1	< 0,3	
12	CTE - Zona flltro-pressa - Trattamento acque	12/09/2013	< 1	< 1	< 0,3	
Campagna	del 26/11/2013 - Rapporti di prova n. 2111565-001/012	del 12/12/2013				
1	Zona TAS - Macro Area - AA - Fronte vasche terminali	26/11/2013	3097	< 1	< 0,3	
2	Vasca percolatore biologico a placche	26/11/2013	< 1	< 1	< 0,3	
3	Vasca di equalizzazione	26/11/2013	< 1	< 1	< 0,3	
4	Isola 7 Nord - Blow down	26/11/2013	< 1	< 1	< 0,3	
5	Vasca acque di scarico camera coke	26/11/2013	100	< 1	< 0,3	
6	Macro area - Zona TAF	26/11/2013	214	< 1	< 0,3	
7	Area neri - Serbatoio 102 - greggio - in svuotamento	26/11/2013	< 1	< 1	< 0,3	
8	Vasca Gibellato - drenaggio serbatoi	26/11/2013	< 1	< 1	< 0,3	
9	Area bianchi - Serbatoio 957 - Virgin Nafta - in svuotamento	26/11/2013	< 1	< 1	< 0,3	
10	Serbatoio S85 - Benzina da coking	26/11/2013	< 1	< 1	0,6	
11	Macro area - Isola 8-12 - semilavorati	26/11/2013	120	< 1	< 0,3	
12	CTE - Zona flltro-pressa - Trattamento acque	26/11/2013	< 1	< 1	< 0,3	

Allegato 7

Consumi specifici per tonnellata di petrolio

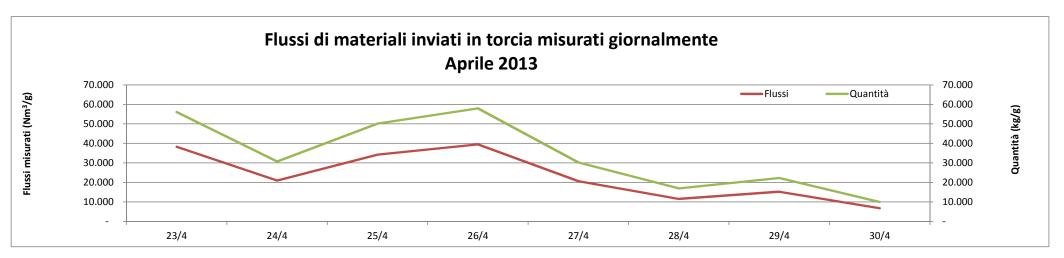
Anno 2013						
Consumi specifici						
Consuntivo consumi 20	013					
acqua Dirillo + pozzi	m^3	3.014.099				
Gas Naturale	Nm ³	71.435.421				
Virgin Naphta	kg	-				
Fuel GAS	kg	109.974				
Fuel OIL	kg	48.536				
Energia Elettrica	KWh	416.890.245				
Consumi specifici 2013						
acqua Dirillo + pozzi	m ³ /t	1,83				
Gas Naturale	Nm ³ /t	43,41				
Virgin Naphta	kg/t	-				
Fuel GAS	kg/t	0,07				
Fuel OIL	kg/t	0,03				
Energia Elettrica	KWh/t	253,36				

Anno 2013				
Tonnellate lavorate ¹				
1.645.418				

¹ Somma greggi + semilavorati

Allegato 8 Caldaie

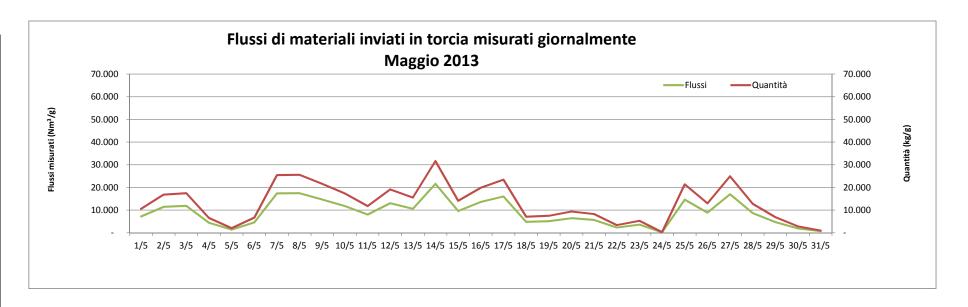
Report Annuale AIA - Anno 2013 - Emissioni ARIA - Caldaie


	Anno 2013						
		Emissioni CTE-SNOx (camini E3 ed E21)					
	U.M. SO ₂ NOx CO PST Ni					٧	
emissione annuale	ton/anno	1.786	452	223	17	7,84E-02	5,15E-03
emissione specifica	g/Gj	172,53	43,66	21,54	1,64	7,57E-03	4,97E-04

Allegato 9 Torce

Report Annuale AIA - Anno 2013 - Emissioni ARIA - Torce

Anno 2013 Flussi di materiali inviati in torcia misurati giornalmente APRILE					
Peso molecolare medio ga			32,87		
		Torcia D ₁ (NOTA	()		
Data	(Quantità	Flussi		
	(ton/g)	(kg/g)	(Nm³/g)		
Messa a regime del misuro					
1/4	,				
2/4					
3/4					
4/4					
5/4					
6/4					
7/4					
8/4					
9/4					
10/4					
11/4					
12/4					
13/4					
14/4					
15/4					
16/4					
17/4					
18/4					
19/4					
20/4					
21/4					
22/4					
23/4	56,10	56.100	38.254		
24/4	30,72	30.720	20.948		
25/4	50,21	50.210	34.238		
26/4	57,98	57.980	39.536		
27/4	30,26	30.260	20.634		
28/4	16,94	16.940	11.551		
29/4	22,31	22.310	15.213		
30/4	9,98	9.980	6.805		


NOTA - Torcia C: Misuratore di portata installato ma Torcia C in manutenzione programmata

Report Annuale AIA - Anno 2013 - Emissioni ARIA - Torce

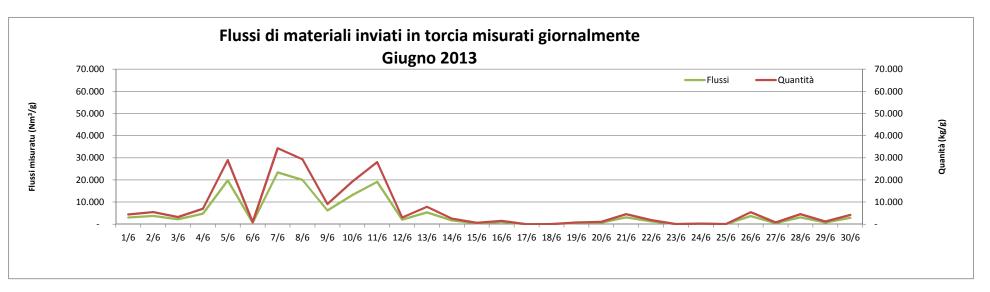
Anno 2013 Flussi di materiali inviati in torcia misurati giornalmente MAGGIO				
Peso molecolare medio gas	_		32,87	
	1	· · · · · · · · · · · · · · · · · · ·		
Data	Torcia D ₁ ^(NOTA) Quantità		Flussi	
	(ton/g)	(kg/g)	(Nm³/g)	
1/5	10,50	10.500	7.160	
2/5	16,78	16.776	11.440	
3/5	17,40	17.400	11.865	
4/5	6,55	6.550	4.466	
5/5	2,01	2.010	1.371	
6/5	6,69	6.690	4.562	
7/5	25,40	25.400	17.320	
8/5	25,52	25.520	17.402	
9/5	21,56	21.560	14.702	
10/5	17,32	17.320	11.810	
11/5	11,76	11.760	8.019	
12/5	19,14	19.140	13.052	
13/5	15,52	15.520	10.583	
14/5	31,62	31.620	21.562	
15/5	14,10	14.100	9.615	
16/5	19,93	19.930	13.590	
17/5	23,45	23.450	15.991	
18/5	7,06	7.060	4.814	
19/5	7,45	7.450	5.080	
20/5	9,39	9.390	6.403	
21/5	8,26	8.260	5.632	
22/5	3,39	3.390	2.312	
23/5	5,25	5.250	3.580	
24/5	0,30	300	205	
25/5	21,40	21.400	14.593	
26/5	12,99	12.990	8.858	
27/5	24,92	24.920	16.993	
28/5	12,75	12.750	8.694	
29/5	6,88	6.880	4.691	
30/5	2,80	2.800	1.909	
31/5	1,00	1.000	682	

NOTA - Torcia C: Misuratore di portata installato ma Torcia C in manutenzione programmata

Report Annuale AIA - Anno 2013 - Emissioni ARIA - Torce

Anno 2013 Flussi di materiali inviati in torcia misurati giornalmente					
Peso molecolare medio g	as in torcia 23/04-30/0		32,87		
Data	Torcia D ₁ ^(NOTA)				
	Quantità		Flussi		
	(ton/g)	(kg/g)	(Nm³/g)		
1/6	4,40	4.400	3.000		
2/6	5,50	5.500	3.750		
3/6	3,20	3.200	2.182		
4/6	7,00	7.000	4.773		
5/6	29,00	29.000	19.775		
6/6	1,00	1.000	682		
7/6	34,30	34.300	23.389		
8/6	29,30	29.300	19.980		
9/6	9,10	9.100	6.205		
10/6	19,21	19.208	13.098		
11/6	28,03	28.030	19.114		
12/6	3,01	3.005	2.049		
13/6	7,86	7.857	5.358		
14/6	2,52	2.520	1.718		
15/6	0,61	610	416		
16/6	1,46	1.460	996		
17/6	0,00	-	-		
18/6	0,08	80	55		
19/6	0,76	760	518		
20/6	1,03	1.030	702		
21/6	4,51	4.510	3.075		
22/6	1,84	1.840	1.255		
23/6	0,02	20	14		
24/6	0,27	270	184		
25/6	0,02	20	14		
26/6	5,41	5.410	3.689		
27/6	0,75	750	511		
28/6	4,54	4.540	3.096		

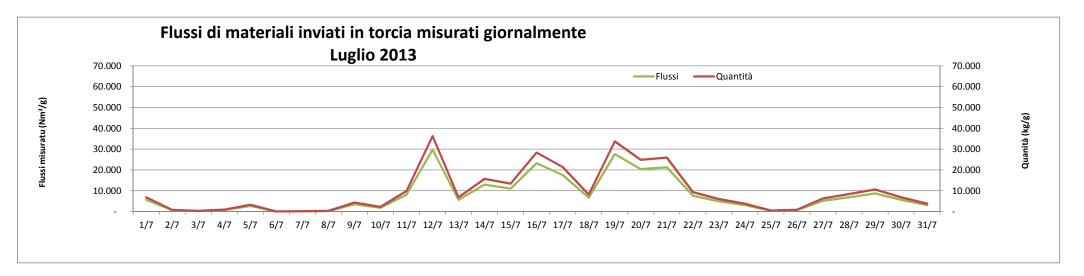
4,19 NOTA - Torcia C: Misuratore di portata installato ma Torcia C in manutenzione programmata


1,18

29/6

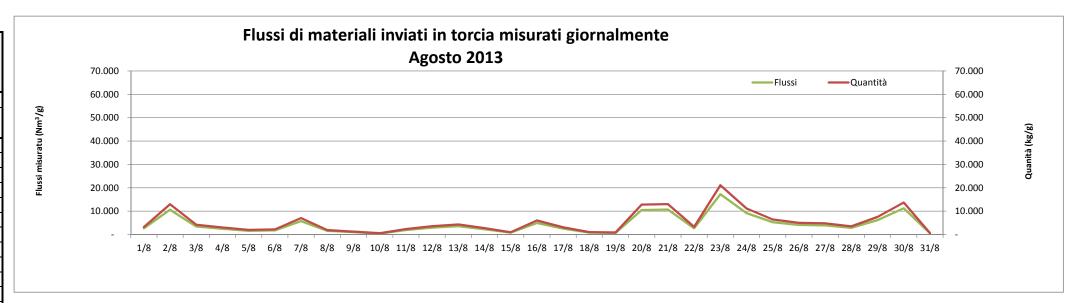
805 2.857

1.180


4.190

Anno 2013	
Flussi di materiali inviati in torcia misurati giornal	mente
LUGLIO	
molecolare medio aas in torcia 01/07 - 30/09 (a):	27.36

reso moiecolare medio gas li		Torcia D ₁ (NOTA)
Data		Quantità	Flussi
	(ton/g)	(kg/g)	(Nm³/g)
1/7	6,83	6.830	5.595
2/7	0,78	780	639
3/7	0,31	310	254
4/7	0,89	890	729
5/7	3,27	3.270	2.679
6/7	0,01	10	8
7/7	0,16	160	131
8/7	0,31	310	254
9/7	4,31	4.310	3.531
10/7	2,20	2.200	1.802
11/7	9,85	9.850	8.069
12/7	36,24	36.240	29.689
13/7	6,85	6.850	5.612
14/7	15,73	15.730	12.886
15/7	13,41	13.410	10.986
16/7	28,32	28.320	23.200
17/7	21,41	21.410	17.540
18/7	8,18	8.180	6.701
19/7	33,71	33.710	27.616
20/7	24,87	24.870	20.374
21/7	25,94	25.940	21.251
22/7	9,31	9.310	7.627
23/7	6,01	6.010	4.924
24/7	3,76	3.760	3.080
25/7	0,48	480	393
26/7	0,82	820	672
27/7	6,34	6.340	5.194
28/7	8,35	8.350	6.841
29/7	10,65	10.650	8.725
30/7	6,83	6.830	5.595
31/7	3,79	3.790	3.105


NOTA - Torcia C: Misuratore di portata installato ma Torcia C in manutenzione programmata

Anno 2013	
Flussi di materiali inviati in torcia misurati giorn	almente
AGOSTO	
eso molecolare medio gas in torcia 01/07 - 30/09 (g):	27,36

Data Quantità (kon/g) Flussi (Nm³/g) 1/8 3,27 3.270 2.679 2/8 13,00 13.000 10.650 3/8 4,24 4.240 3.474 4/8 3,04 3.040 2.490 5/8 1,99 1.990 1.630 6/8 2,19 2.190 1.794 7/8 7,09 7.090 5.808 8/8 1,97 1.970 1.614 9/8 1,27 1.270 1.040 10/8 0,55 550 451 11/8 2,36 2.360 1.933 12/8 3,60 3.600 2.949 13/8 4,36 4.360 3.572 14/8 2,80 2.800 2.294 15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877			Torcia D ₁ ^(NOTA)	
1/8 3,27 3.270 2.679 2/8 13,00 13.000 10.650 3/8 4,24 4.240 3.474 4/8 3,04 3.040 2.490 5/8 1,99 1.990 1.630 6/8 2,19 2.190 1.794 7/8 7,09 7.090 5.808 8/8 1,97 1.970 1.614 9/8 1,27 1.270 1.040 10/8 0,55 550 451 11/8 2,36 2.360 1.933 12/8 3,60 3.600 2.949 13/8 4,36 4.360 3.572 14/8 2,80 2.800 2.294 15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8	Data			
2/8 13,00 13.000 10.650 3/8 4,24 4.240 3.474 4/8 3,04 3.040 2.490 5/8 1,99 1.990 1.630 6/8 2,19 2.190 1.794 7/8 7,09 7.090 5.808 8/8 1,97 1.970 1.614 9/8 1,27 1.270 1.040 10/8 0,55 550 451 11/8 2,36 2.360 1.933 12/8 3,60 3.600 2.949 13/8 4,36 4.360 3.572 14/8 2,80 2.800 2.294 15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 </th <th></th> <th>(ton/g)</th> <th>(kg/g)</th> <th>(Nm³/g)</th>		(ton/g)	(kg/g)	(Nm ³ /g)
3/8 4,24 4.240 3.474 4/8 3,04 3.040 2.490 5/8 1,99 1.990 1.630 6/8 2,19 2.190 1.794 7/8 7,09 7.090 5.808 8/8 1,97 1.970 1.614 9/8 1,27 1.270 1.040 10/8 0,55 550 451 11/8 2,36 2.360 1.933 12/8 3,60 3.600 2.949 13/8 4,36 4.360 3.572 14/8 2,80 2.800 2.294 15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 <td>1/8</td> <td>3,27</td> <td>3.270</td> <td>2.679</td>	1/8	3,27	3.270	2.679
4/8 3,04 3.040 2.490 5/8 1,99 1.990 1.630 6/8 2,19 2.190 1.794 7/8 7,09 7.090 5.808 8/8 1,97 1.970 1.614 9/8 1,27 1.270 1.040 10/8 0,55 550 451 11/8 2,36 2.360 1.933 12/8 3,60 3.600 2.949 13/8 4,36 4.360 3.572 14/8 2,80 2.800 2.294 15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8	2/8	13,00	13.000	10.650
5/8 1,99 1.990 1.630 6/8 2,19 2.190 1.794 7/8 7,09 7.090 5.808 8/8 1,97 1.970 1.614 9/8 1,27 1.270 1.040 10/8 0,55 550 451 11/8 2,36 2.360 1.933 12/8 3,60 3.600 2.949 13/8 4,36 4.360 3.572 14/8 2,80 2.800 2.294 15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.	3/8	4,24	4.240	3.474
6/8 2,19 2.190 1.794 7/8 7,09 7.090 5.808 8/8 1,97 1.970 1.614 9/8 1,27 1.270 1.040 10/8 0,55 550 451 11/8 2,36 2.360 1.933 12/8 3,60 3.600 2.949 13/8 4,36 4.360 3.572 14/8 2,80 2.800 2.294 15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 <td< td=""><td>4/8</td><td>3,04</td><td>3.040</td><td>2.490</td></td<>	4/8	3,04	3.040	2.490
7/8 7,09 7.090 5.808 8/8 1,97 1.970 1.614 9/8 1,27 1.270 1.040 10/8 0,55 550 451 11/8 2,36 2.360 1.933 12/8 3,60 3.600 2.949 13/8 4,36 4.360 3.572 14/8 2,80 2.800 2.294 15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 <t< td=""><td>5/8</td><td>1,99</td><td>1.990</td><td>1.630</td></t<>	5/8	1,99	1.990	1.630
8/8 1,97 1.970 1.614 9/8 1,27 1.270 1.040 10/8 0,55 550 451 11/8 2,36 2.360 1.933 12/8 3,60 3.600 2.949 13/8 4,36 4.360 3.572 14/8 2,80 2.800 2.294 15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 <t< td=""><td>6/8</td><td>2,19</td><td>2.190</td><td>1.794</td></t<>	6/8	2,19	2.190	1.794
9/8 1,27 1.270 1.040 10/8 0,55 550 451 11/8 2,36 2.360 1.933 12/8 3,600 3.600 2.949 13/8 4,36 4.360 3.572 14/8 2,80 2.800 2.294 15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908	7/8	7,09	7.090	5.808
10/8 0,55 550 451 11/8 2,36 2.360 1.933 12/8 3,60 3.600 2.949 13/8 4,36 4.360 3.572 14/8 2,80 2.800 2.294 15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	8/8	1,97	1.970	1.614
11/8 2,36 2.360 1.933 12/8 3,60 3.600 2.949 13/8 4,36 4.360 3.572 14/8 2,80 2.800 2.294 15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248 <td>9/8</td> <td>1,27</td> <td>1.270</td> <td>1.040</td>	9/8	1,27	1.270	1.040
12/8 3,60 3.600 2.949 13/8 4,36 4.360 3.572 14/8 2,80 2.800 2.294 15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	10/8	0,55	550	451
13/8 4,36 4.360 3.572 14/8 2,80 2.800 2.294 15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	11/8	2,36	2.360	1.933
14/8 2,80 2.800 2.294 15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	12/8	3,60	3.600	2.949
15/8 1,02 1.020 836 16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	13/8	4,36	4.360	3.572
16/8 6,06 6.060 4.965 17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	14/8	2,80	2.800	2.294
17/8 3,09 3.090 2.531 18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	15/8	1,02	1.020	836
18/8 1,07 1.070 877 19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	16/8	6,06	6.060	4.965
19/8 0,89 890 729 20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	17/8	3,09	3.090	2.531
20/8 12,85 12.850 10.527 21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	18/8	1,07	1.070	877
21/8 13,07 13.070 10.707 22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	19/8	0,89	890	729
22/8 3,30 3.300 2.703 23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	20/8	12,85	12.850	10.527
23/8 21,11 21.110 17.294 24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	21/8	13,07	13.070	10.707
24/8 11,20 11.200 9.175 25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	22/8	3,30	3.300	2.703
25/8 6,47 6.470 5.300 26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	23/8	21,11	21.110	17.294
26/8 5,01 5.010 4.104 27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	24/8	11,20	11.200	9.175
27/8 4,82 4.820 3.949 28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	25/8	6,47	6.470	5.300
28/8 3,55 3.550 2.908 29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	26/8	5,01	5.010	4.104
29/8 7,59 7.590 6.218 30/8 13,73 13.730 11.248	27/8	4,82	4.820	3.949
30/8 13,73 13.730 11.248	28/8	3,55	3.550	2.908
	29/8	7,59	7.590	6.218
31/8 0,68 680 557	30/8	13,73	13.730	11.248
	31/8	0,68	680	557

NOTA - Torcia C: Misuratore di portata installato ma Torcia C in manutenzione programmata

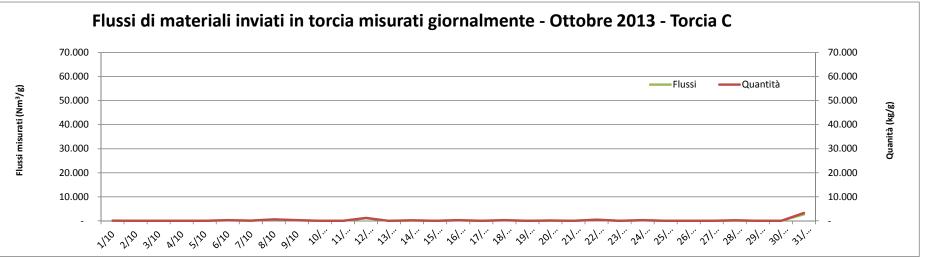
30/9

0,28

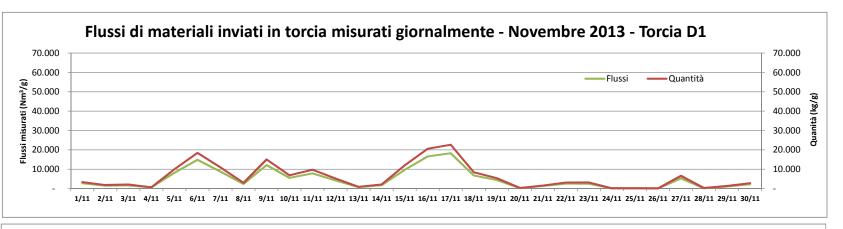
		Anı	no 2013			
	Flussi di	materiali inviati i	n torcia misurati	giornalme	nte	
			TEMBRE			
Peso molecolare medio g	gas in torcia 01,	/07 - 30/09 (g):				27,36
		Torcia D ₁			Torcia C	
Data	Q	(uantità	Flussi	Qı	uantità	Flussi
	(ton/g)	(kg/g)	(Nm³/g)	(ton/g)	(kg/g)	(Nm³/g)
Entrata in esercizio della	a Torcia C a segu	uito di manutenzione	e, e messa a regime	e del misura	tore di portata: 2/	9/2013
Manutenzione su guardi	ia idraulica Torc	cia D1: dal 7/9/2013	al 30/10/2013			
1/9	2,67	2.670	2.187			
2/9	2,27	2.270	1.860	0,00	-	-
3/9	17,20	17.200	14.091	0,00	-	-
4/9	9,87	9.870	8.086	0,00	-	
5/9	5,80	5.800	4.752	0,04	40	33
6/9	6,05	6.050	4.956	5,04	5.040	4.129
7/9	0,13	130	106	0,01	10	8
8/9	0,64	640	524	0,00	-	-
9/9	0,56	560	459	0,00	-	-
10/9	0,59	590	483	0,02	20	16
11/9	0,57	570	467	0,00	-	-
12/9	0,38	380	311	0,00	-	-
13/9	0,25	250	205	0,02	20	16
14/9	0,06	60	49	0,00	-	-
15/9	0,04	40	33	0,00	-	-
16/9	0,01	10	8	0,25	250	205
17/9	0,02	20	16	0,00	-	-
18/9	0,00	-	-	0,00	-	-
19/9	0,08	80	66	0,00	-	-
20/9	0,13	130	106	0,00	-	-
21/9	0,17	170	139	0,02	20	16
22/9	0,01	10	8	0,00	-	-
23/9	0,04	40	33	0,00	-	-
24/9	0,08	80	66	0,00	-	-
25/9	0,21	210	172	0,00	-	-
26/9	0,25	250	205	0,00	-	-
27/9	0,63	630	516	0,00	-	-
28/9	0,04	40	33	0,00	-	-
29/9	0,00	-	-	0,00	-	-
20/0	0.20	200	222	0.00		

280

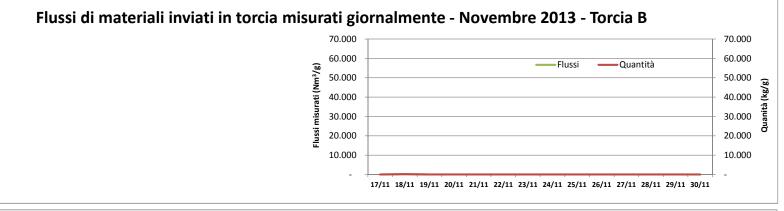
229 0,00

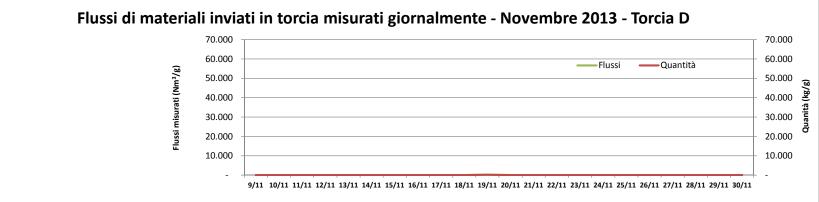


Report Annuale AIA - Anno 2013 - Emissioni ARIA - Torce

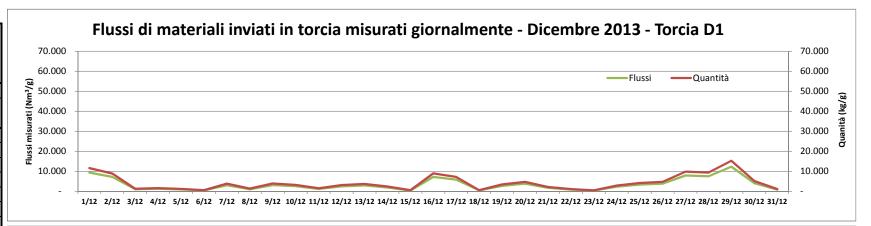

Anno 2013	
Flussi di materiali inviati in torcia misurati giornalmente	
OTTOBRE	
medio gas in torcia 01/10 - 31/12 (a):	27.81

eso moiecolare meal		Torcia C							
Data	Qı	uantità	Flussi	Qı	Flussi				
	(ton/g)	(kg/g)	(Nm³/g)	(ton/g) (kg/g)		(Nm ³ /g)			
Manutenzione su guar	rdia idraulica Tor	cia D1: dal 7/9/20		3					
1/10	0,43	430	347	0,06	60	48			
2/10	0,07	70	56	0,00	-	-			
3/10	0,03	30	24	0,00	-	-			
4/10	0,19	190	153	0,00	-	-			
5/10	0,19	190	153	0,00	-	-			
6/10	0,00	-	-	0,29	290	234			
7/10	0,30	300	242	0,06	60	48			
8/10	0,29	290	234	0,64	640	510			
9/10	0,32	320	258	0,27	270	218			
10/10	0,00	-	-	0,00	-	-			
11/10	0,02	20	16	0,00	-	-			
12/10	0,00	-	-	1,30	1.300	1.04			
13/10	0,04	40	32	0,03	30	2			
14/10	0,27	270	218	0,22	220	17			
15/10	0,14	140	113	0,00	-	-			
16/10	0,00	-	-	0,27	270	21			
17/10	0,56	560	451	0,00	-	-			
18/10	0,85	850	685	0,29	290	23			
19/10	0,00	-	-	0,00	-	-			
20/10	0,00	-	-	0,14	140	11			
21/10	0,00	-	-	0,00	-	-			
22/10	0,00	-	-	0,51	510	41			
23/10	0,00	-	-	0,00	-	-			
24/10	0,00	-	-	0,29	290	23			
25/10	0,00	-	-	0,00	-	-			
26/10	0,00	-	-	0,00	-	-			
27/10	0,00	-	-	0,00	-	-			
28/10	0,00	-	-	0,19	190	15			
29/10	0,01	10	8	0,00	-	-			
30/10	0,07	70	56	0,00	-	-			
31/10	22,67	22.670	18.271	3,37	3.370	2.71			





Anno 2013												
	Flussi di materiali inviati in torcia misurati giornalmente											
					NOVEM	BRE						
Peso molecolare medio ga	s in torcia		/12 (g):	1			1			1	27,81	
		Torcia D ₁			Torcia C			Torcia B	ı		Torcia D	
Data		ntità	Flussi	Qua		Flussi	Qua		Flussi		ntità	Flussi
	(ton/g)	(kg/g)	(Nm³/g)		(kg/g)	(Nm ³ /g)	(ton/g)	(kg/g)	(Nm ³ /g)	(ton/g)	(kg/g)	(Nm³/g)
Messa a regime del misuro												
Messa a regime del misuro									1			
1/11	3,42	3.420	2.756	0,00	-	-						
2/11	1,82	1.820	1.467	0,00	-	-						
3/11	2,05	2.050	1.652	0,00	-	-						
4/11	0,67	670	540	0,00	-	-						
5/11	10,03	10.030	8.084	2,28	2.280	1.838						
6/11	18,42	18.420	14.846	0,14	140	113						
7/11	10,88	10.880	8.769	6,52	6.520	5.255						
8/11	2,94	2.940	2.370	0,00	-	-						
9/11	15,08	15.080	12.154	0,00	-	-				0,00	-	-
10/11	6,84	6.840	5.513	0,00	-	-				0,00	-	-
11/11	9,75	9.750	7.858	0,01	10	8				0,00	-	-
12/11	5,21	5.210	4.199	0,00	-	-				0,00	-	-
13/11	0,93	930	750	0,00	-	-				0,00	-	-
14/11	2,12	2.120	1.709	0,00	•	-				0,01	10	8
15/11	11,97	11.970	9.647	0,11	110	89				0,00	-	-
16/11	20,56	20.560	16.571	0,00	-	-				0,00	-	-
17/11	22,64	22.640	18.247	0,00	-	-	0,00	-	-	0,00	-	-
18/11	8,39	8.390	6.762	0,00	-	-	0,22	220	177	0,00	-	-
19/11	5,38	5.380	4.336	0,00	-	-	0,00	-	-	0,18	180	145
20/11	0,32	320	258	0,00	-	-	0,00	-	-	0,00	-	-
21/11	1,60	1.600	1.290	0,00	-	-	0,00	-	-	0,00	-	-
22/11	3,16	3.160	2.547	0,00	-	-	0,00	-	-	0,01	10	8
23/11	3,12	3.120	2.515	0,00	-	-	0,00	_	-	0,00	-	-
24/11	0,14	140	113	0,00	-	-	0,00	-	-	0,00	-	-
25/11	0,13	130	105	0,00	-	-	0,00	-	-	0,00	-	-
26/11	0,09	90	73	0,00	-	-	0,00	-	-	0,00	-	-
27/11	6,58	6.580	5.303	0,05	50	40	0,00	-	-	0,01	10	8
28/11	0,21	210	169	0,00	-	-	0,00	-	-	0,00	-	-
29/11	1,33	1.330	1.072	0,00	-	-	0,00	-	-	0,01	10	8
30/11	2,77	2.770	2.233	0,00	-	-	0,00	-	-	0,00	-	-



Anno 2013	
Flussi di materiali inviati in torcia misurati giornalmente	
DICEMBRE	
Peso molecolare medio gas in torcia 01/10 - 31/12 (g):	27,81

Torcia D ₁				Torcia C				Torcia B		Torcia D		
Data	Qua	ntità	Flussi	Qua	ntità	Flussi	Qua	ntità	Flussi	Qua	ntità	Flussi
	(ton/g)	(kg/g)	(Nm³/g)	(ton/g)	(kg/g)	(Nm³/g)	(ton/g)	(kg/g)	(Nm³/g)	(ton/g)	(kg/g)	(Nm³/g)
1/12	11,64	11.640	9.381	0,80	800	645	0,00	-	-	0,00	-	-
2/12	8,92	8.920	7.189	0,00	-	-	0,00	-	-	0,00	-	-
3/12	1,30	1.300	1.048	0,00	-	-	0,00	-	-	0,00	-	-
4/12	1,59	1.590	1.281	0,68	680	548	0,87	870	701	0,76	760	613
5/12	1,21	1.210	975	0,00	-	-	0,00	-	-	0,00	-	-
6/12	0,60	600	484	0,00	-	-	0,00	-	-	0,00	-	-
7/12	3,83	3.830	3.087	0,00	-	-	0,00	-	-	0,00	-	-
8/12	1,33	1.330	1.072	0,00	-	-	0,00	-	-	0,00	-	-
9/12	3,93	3.930	3.167	0,00	-	-	0,00	-	-	0,00	-	-
10/12	3,22	3.220	2.595	0,29	290	234	0,00	-	-	0,00	-	-
11/12	1,53	1.530	1.233	0,00	-	-	0,00	-	-	0,00	-	-
12/12	3,11	3.110	2.507	0,00	-	-	0,00	-	-	0,00	-	-
13/12	3,72	3.720	2.998	0,00	-	-	0,00	-	-	0,00	-	-
14/12	2,40	2.400	1.934	0,16	160	129	0,00	-	-	0,00	-	-
15/12	0,53	530	427	0,00	-	-	0,00	-	-	0,00	-	-
16/12	8,97	8.970	7.230	0,00	-	-	0,00	-	-	0,00	-	-
17/12	7,25	7.250	5.843	0,02	20	16	0,00	-	-	0,00	-	-
18/12	0,57	570	459	0,00	-	-	0,00	-	-	0,00	-	-
19/12	3,43	3.430	2.764	0,00	-	-	0,00	-	-	0,00	-	-
20/12	4,75	4.750	3.828	0,00	-	-	0,00	-	-	0,00	-	-
21/12	2,20	2.200	1.773	0,00	-	-	0,00	-	-	0,00	-	-
22/12	1,15	1.150	927	0,00	-	-	0,00	-	-	0,00	-	-
23/12	0,47	470	379	0,00	-	-	0,00	-	-	0,00	-	-
24/12	2,90	2.900	2.337	0,00	-	-	0,00	-	-	0,01	10	8
25/12	4,15	4.150	3.345	0,00	-	-	0,00	-	-	0,00	-	-
26/12	4,75	4.750	3.828	0,00	-	-	0,00	-	-	0,00	-	-
27/12	9,84	9.840	7.931	0,01	10	8	0,00	-	-	0,00	-	1
28/12	9,35	9.350	7.536	0,00	-	-	0,00	-	-	0,00	-	-
29/12	15,30	15.300	12.331	0,43	430	347	0,00	-	-	0,00		-
30/12	5,11	5.110	4.119	0,60	600	484	0,00		-	0,00		-
31/12	1,13	1.130	911	0,00	_	-	0,00	-	-	0,00	_	-

Allegato 10 Unità di Recupero Zolfo

Report Annuale AIA - Anno 2013 - Emissioni ARIA - Unità di recupero Zolfo

ANNO 2013 Unità di recupero Zolfo										
Impianto	ore effettivo funzionamento	rendimento medio semestrale ¹								
Acido Solforico	7680	99,9%								
Claus	6264	99,3%								

¹ Fino all'installazione del sistema di monitoraggio in continuo in ottemperanza a quanto prescritto nel Decreto AIA, la determinazione della resa di conversione viene eseguita utilizzando i dati derivanti dal monitoraggio semestrale previsto dal PMC

	Anno 2013											
					Produzione sp	ecifica di Zolfo						
Mese	Gennaio	Febbraio	Marzo	Aprile	Maggio	Giugno	Luglio	Agosto	Settembre	Ottobre	Novembre	Dicembre
Zolfo prodotto (t)	3.040	1.016	1.195	3.718	3.567	837	2.291	3.451	1.674	3.043	2.654	3.129
Totale lavorato ¹ (t)	128.911	101.409	99.338	131.338	156.306	31.055	165.459	190.230	168.580	141.501	141.201	190.090
Produzione specifica di Zolfo (g/t)	23.583	10.019	12.031	28.309	22.818	26.948	13.846	18.143	9.928	21.506	18.796	16.463

¹Somma greggi + semilavorati

Anno 2013			
Zolfo fuori specifica prodotto per semestre			
I semestre 2013	II semestre 2013		
(t) (t)			
2,36	0		

Appendici

Appendice 1

Simulazione modellistica delle ricadute al suolo degli inquinanti emessi - Anno 2013

Decreto AIA DEC-MIN 0000236 del 21/12/2012

Studio modellistico delle ricadute delle emissioni di inquinanti in atmosfera derivanti dall'esercizio della raffineria nell'anno 2013

ENI S.p.A. - Raffineria di Gela Aprile 2014

Studio modellistico delle ricadute delle emissioni al suolo raffineria di gela Esercizio impianto anno 2013

INDICE

Sezior	ne N° di Pa	g.
1.	PREMESSA 1	
2.	RIFERIMENTI NORMATIVI2	
3.	ANALISI DELLA QUALITÀ DELL'ARIA4	
3.1. 3.2. 3.3. 3.4. 3.5.	Contesto territoriale	
4.	DATI METEOROLOGICI8	
4.1. 4.2. 4.3. 4.4.	Analisi dei dati meteorologici disponibili	
5.	IL MODELLO DI DISPERSIONE DEGLI INQUINANTI21	
5.1. 5.2. 5.3. 5.4.	Inquinanti considerati	
6.	RISULTATI DELLE SIMULAZIONI28	
6.1.	Validazione delle simulazioni modellistiche31	
7.	CONCLUSIONI	
8.	BIBLIOGRAFIA	

TAVOLE

Tavola 1 – SO_2 media anno

Tavola 2 – SO₂ media giorno

Tavola 3 - SO_2 media ora

Studio modellistico delle ricadute delle emissioni al suolo Esercizio impianto anno 2013

INDICE

- Tavola 4 PM₁₀ media anno
- Tavola 5 PM₁₀ media giorno
- Tavola 6 NO₂ media anno
- Tavola 7 NO₂ media ora
- Tavola 8 CO media 8 ore
- Tavola 9 NOx media anno
- Tavola 10 C₆H₆ media anno
- Tavola 11 H₂S media anno
- Tavola 12 NH₃ media anno
- Tavola 13 IPA media anno
- Tavola 14 Pb media anno
- Tavola 15 Ni media anno

Studio modellistico delle ricadute delle emissioni al suolo raffineria di gela Esercizio impianto anno 2013

1. PREMESSA

La società Raffineria di Gela S.p.A. ha ottenuto l'Autorizzazione Integrata Ambientale (AIA) per l'esercizio della Raffineria sita nel comune di Gela (CL) tramite il Decreto DEC-MIN-0000236 del 21/12/2012 (Decreto AIA). A tale Decreto, pubblicato sulla Gazzetta Ufficiale - Serie Generale n. 8 del 10/01/2013, è allegato il Parere Istruttorio Conclusivo, reso il 13/12/2012 dalla competente Commissione Istruttoria AIA-IPPC con protocollo CIPPC-2012-001654 comprensivo del Piano di Monitoraggio e Controllo (PMC).

Secondo quanto richiesto al paragrafo 8.2 prescrizione n. 3 del PIC, "il Gestore deve trasmettere nell'ambito del report annuale, secondo le tempistiche e modalità individuate nel PMC, una relazione relativa alle ricadute delle emissioni inquinanti in atmosfera derivanti dall'esercizio della raffineria nell'anno precedente. Le valutazioni modellistiche, da effettuarsi con le modalità concordate con l'Ente di controllo, dovranno stimare le ricadute short term e long term per gli inquinanti SO₂, NOx, polveri e microinquinanti organici ed inorganici nel dominio all'interno del Comune di Gela. Il modello deve tener conto degli effettivi volumi di produzione rapportati ai periodi short e long term".

Con nota RAGE/AD/DIGE/245/T del 02/04/2014 la raffineria ha trasmesso all'Organo di controllo ed all'Autorità competente le modalità di realizzazione dello studio modellistico.

La presente relazione raccoglie e presenta i risultati dello studio modellistico eseguito, in termini di impatto sulla componente atmosfera generato dalle emissioni provenienti dalla raffineria di Gela nell'anno 2013, in adempimento ai requisiti della prescrizione n. 3 sopra richiamata.

2. RIFERIMENTI NORMATIVI

Si richiamano, di seguito, i valori limite dei principali inquinanti definiti dalla normativa italiana, in particolare il limiti contenuti nel Decreto legislativo 13 agosto 2010, n.155, in recepimento della Direttiva 2008/50/CE. In Tabella 2-1 sono indicati, per tali inquinanti, il periodo di mediazione ed il valore limite.

Tabella 2-1 Valori limite di qualità dell'aria (Decreto legislativo 13 agosto 2010, n.155)

Inquinante	Livello di protezione	Periodo di mediazione	Valore limite
NO ₂	Valore limite orario per la protezione della salute umana	Ora	200 μg/m³ da non superare più di 18 volte per l'anno civile (corrisponde al 99.794 perc.)
	Valore limite annuale per la protezione della salute umana	Anno civile	40 μg/m³
PM ₁₀	Valore limite giornaliero per la protezione della salute umana	Giorno	50 μg/m ³ da non superare più di 35 volte per l'anno civile (corrisponde al 90.410 perc.)
	Valore limite annuale per la protezione della salute umana	Anno civile	40 μg/m³
	Valore limite orario per la protezione della salute umana	Ora	350 μg/m³ da non superare più di 24 volte per l'anno civile (corrisponde al 99.726 perc.)
SO ₂	Valore limite per la protezione degli ecosistemi	Anno civile e Inverno (1 ottobre – 31 marzo)	20 μg/m³
	Valore limite di 24 ore per la protezione della salute umana	Giorno	125 μg/m ³ da non superare più di 3 volte per l'anno civile (corrisponde al 99.178 perc.)
Benzene	Valore limite annuale per la protezione della salute umana	Anno civile	5 μg/m³
NO _X	Valore limite per la protezione della vegetazione	Anno civile	30 μg/m³
Benzo(a)pirene	Valore limite orario per la protezione della salute umana	Anno civile	1 ng/m³

Inquinante	Livello di protezione	Periodo di mediazione	Valore limite
СО	Valore limite orario per la protezione della salute umana	Media massima giornaliera calcolata su 8 ore	10 mg/m ³
PM _{2.5}	Valore limite annuale per la protezione della salute umana	Anno civile	25 μg/m³
Valore limite annuale per la Pb protezione della salute Anno civile umana		Anno civile	0.5 μg/m ³
Ni	Valore limite annuale per la protezione della salute umana	Anno civile	20 ng/ m ³

Il DLgs 155/2010 - "Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa" - GU n.216 del 15-9-2010 - Suppl. Ordinario n. 217" è il riferimento legislativo per la qualità dell'aria, recepisce la direttiva 2008/50/CE e sostituisce le disposizioni di attuazione della direttiva 2004/107/CE.

Per gli inquinanti SO₂, NO₂, PM₁₀ e CO la normativa di riferimento fissa il numero di volte che la concentrazione limite può essere superata in un anno; i risultati della modellazione delle concentrazioni al suolo sono quindi elaborati in modo da rappresentare il corrispondente percentile della concentrazione massima (nell'intervallo temporale fissato). I valori annuali sono invece mediati sull'anno completo.

Inquinanti non normati

Si sottolinea inoltre che il DLgs 155/2010 non considera gli inquinanti H_2S e NH_3 . Si è tuttavia ritenuto di estendere ad essi le elaborazioni in quanto caratteristici della tipologia di lavorazioni svolte nell'impianto: i valori utilizzati come riferimento per le concentrazioni al suolo di acido solfidrico e ammoniaca utilizzate sono tratte dalla letteratura internazionale (Tabella 2-2).

Tabella 2-2 Riferimenti relativi alle concentrazioni al suolo di acido solfidrico e ammoniaca

Inquinante	Periodo di mediazione	Concentrazione limite	Fonte
H ₂ S		150 μg/m ³	WHO Guidelines ed. 2000
NH ₃	giorno	100 μg/m ³	EEA (Air Guidelines Table - February 2014)

Pagina 3

3. ANALISI DELLA QUALITÀ DELL'ARIA

3.1. Contesto territoriale

La raffineria è ubicata a Sud-Est dell'abitato di Gela (Figura 3.1). Il territorio in esame allo studio è caratterizzato da una zona fortemente industrializzata che si affaccia sul mare, e dall'entroterra agricolo e rurale.

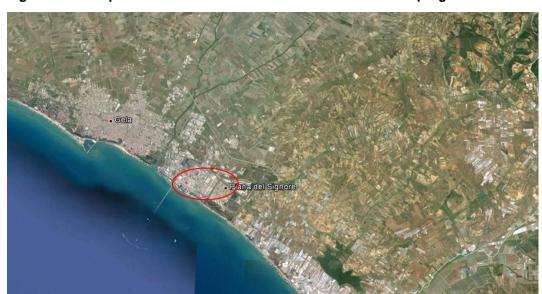


Figura 3.1 Inquadramento territoriale dell'area interessata dal progetto

Il dominio dell'area di simulazione corrisponde all'area di forma quadrata avente lato di 10 km, e posizionata in modo tale che la Raffineria risultasse localizzata al centro dell'area stessa (si veda la Figura 5.2 in Sezione 5.3 "Griglia dei recettori").

3.2. La rete di monitoraggio della qualità dell'aria

La raffineria di Gela gestisce una rete di 8 centraline di rilevamento della qualità dell'aria, indicate nel seguito, la cui ubicazione è illustrata Figura 6.1 (in Sezione 6.1 "Validazione delle simulazioni modellistiche").

Le 8 centraline sono identificate come nel seguito:

- C. Soprano
- P. Rimembranze
- C. Giardinia
- Ponte Olivo
- Niscemi Sud
- Agip SpA
- Catarrosone
- Farello

La completezza dei dati validi rilevati dalle centraline per l'anno 2013 è indicata nella Tabella 3-1 seguente.

Tabella 3-1 Completezza dei dati di qualità dell'aria per l'anno 2013

Stazione	SO ₂	NO ₂	PM ₁₀
C. Soprano	89%	-	75%
P. Rimembranze	93%	82%	94%
C. Giardinia	94%	-	-
Ponte Olivo	73%	-	-
Niscemi Sud	94%	-	98%
Agip SpA	89%	-	92%
Catarrosone	87%	-	-
Farello	54%	-	53%

Nei paragrafi seguenti si riportano le tabelle risultanti dell'analisi degli inquinanti atmosferici disponibili ed il relativo confronto con i limiti normativi vigenti.

3.3. Biossido di Zolfo (SO₂)

Dalla Tabella 3-2 seguente si nota come i valori rilevati nelle centraline nell'anno 2013 sono tutti ampiamente entro i limiti normativi.

Tabella 3-2 Confronto tra i valori misurati dalle centraline ed i limiti normativi per l'inquinante SO₂

Inquinante	SO ₂		
Periodo di mediazione	media annuale	percentile giornaliero	percentile orario
Limite di legge	20	125	350
U.d.M	μg/m³	μg/m³	μg/m³
C. Soprano	0.51	2	2.46
P. Rimembranze	1.24	5.61	13.63
C. Giardinia	1.04	2.8	6.08
Ponte Olivo	1.48	10.97	26.89
Niscemi Sud	0.42	1.39	1.98
Agip SpA	2.65	34.17	176.11
Catarrosone	2.17	11.95	17.2
Farello	1.1	70.84	22.86

3.4. Materiale Particolato (PM₁₀)

In relazione alle polveri, si evidenziano concentrazioni significative ma sempre entro i limiti normativi.

Tabella 3-3 Confronto tra i valori misurati dalle centraline ed i limiti normativi per l'inquinante PM₁₀

Inquinante	PM ₁₀		
Periodo di mediazione	media annuale	percentile giornaliero	
Limite di legge	40	50	
U.d.M	μg/m³	μg/m³	
C. Soprano	19.39	25.01	
P. Rimembranze	23.16	31.7	
Niscemi Sud	20.26	28.68	
Agip SpA	19.22	27.73	
Farello	23.24	33.13	

3.5. Biossido di Azoto (NO₂)

Dalla Tabella 3-4 seguente si nota come le concentrazioni di ossidi di azoto (rilevate solo presso la centralina P. Rimembranze) siano molto minori del relativo riferimento normativo.

Tabella 3-4 Confronto tra i valori misurati dalle centraline ed i limiti normativi per l'inquinante NO₂

Inquinante	NO₂ media annuale percentile orario		
Periodo di mediazione			
Limite di legge	40	200	
U.d.M	μg/m³	μg/m³	
P. Rimembranze	12.53	60	

4. DATI METEOROLOGICI

4.1. Analisi dei dati meteorologici disponibili

In Figura 4.1 è rappresentata l'ubicazione delle centraline meteorologiche più vicine alla raffineria di Gela. In rosso è segnalata la centralina Agip Petroli che, vista la sua vicinanza alla raffineria, è stata scelta come più rappresentativa delle condizioni meteoclimatiche dell'area in esame. Si segnala che ai fini dello studio sono stati utilizzati i parametri (velocità, direzione del vento e temperatura) misurati presso questa centralina all'altezza di 40 m dal suolo.

Figura 4.1 Ubicazione delle centraline meteorologiche più prossime alla raffineria di Gela

Studio modellistico delle ricadute delle emissioni al suolo Esercizio impianto anno 2013

raffineria di gela

In Tabella 4-1 e in Tabella 4-2 sono rappresentati, su base stagionale, i valori medi massimi e minimi di temperatura e cumulati e massimi di precipitazione, registrati dalla centralina Agip Petroli nel 2013. Nelle seguenti elaborazioni si sono considerati i mesi di dicembre, gennaio e febbraio come invernali, marzo, aprile e maggio come primaverili, giugno, luglio e agosto come estivi, settembre, ottobre e novembre come autunnali.

Tabella 4-1 Temperatura media, massima e minima per la stazione di Agip Petroli per l'anno 2013

	Temperatura (°C)		
	Media Massimo Minimo		
Autunno	19.6	31.1	3.4
Estate	23.5	36.7	12.7
Inverno	11.4	29.0	2.2
Primavera	15.9	30.1	4.7

Precipitazione cumulata, massima e ore di pioggia per la stazione di Tabella 4-2 Agip Petroli per l'anno 2013

		Precipitazione (mm)		
Stagione	Cumulata	Massima	Ore	
Autunno	144.9	24.3	72	
Estate	6.2	3.8	4	
Inverno	128.6	5.9	115	
Primavera	96.2	7.3	74	

Dalle precedenti tabelle si evince che in autunno si registra una precipitazione cumulata maggiore rispetto alle altre stagioni, mentre in inverno si ha il maggior numero di ore di pioggia.

ENI R&M - Raffineria di Gela Pagina 9

Temperatura 40.0 35.0 30.0 25.0 20.0 15.0 10.0 5.0 0.0 **AUTUNNO ESTATE INVERNO PRIMAVERA** ■T media ■T massima T minima

Figura 4.2 Andamento stagionale temperatura (in °C), valori medi, massimi e minimi registrati nella stazione di Agip Petroli per l'anno 2013

La temperatura presenta un picco massimo in estate di sopra i 35°C e un picco minimo a febbraio, comunque al di sopra di 0°C, con le temperatura medie che si mantengono comprese tra 10 e 25°C per l'intero anno (Figura 4.2).

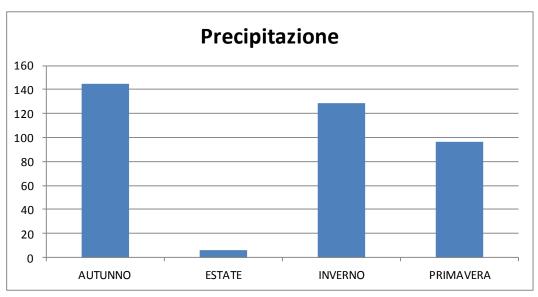


Figura 4.3 Andamento annuale precipitazioni presso la centralina di Agip Petroli, anno 2013

ENI R&M – Raffineria di Gela Aprile 2014 Gli eventi meteorici sono quasi del tutto assenti nei mesi estivi e concentrati per lo più nei mesi di marzo, ottobre e novembre (Figura 4.3).

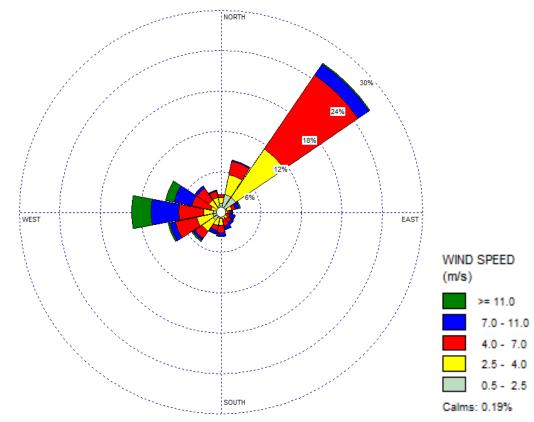


Figura 4.4 Rosa dei venti presso la centralina di Agip Petroli, anno 2013

La rosa dei venti (Figura 4.4) registrata nella stazione di Agip Petroli per l'anno 2013 presenta due direzioni prevalenti: Nord-Est e Ovest. La velocità del vento che si è verificata con maggior frequenza è quella relativa a brezze leggere con valori compresi tra 4 e 7 m/s.

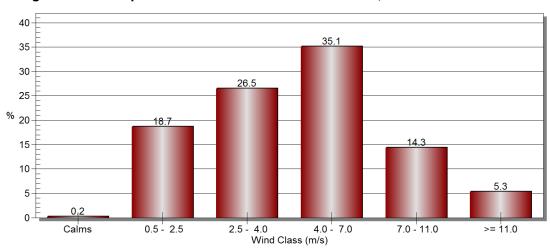


Figura 4.5 Frequenza delle classi di velocità del vento, anno 2013

4.2. Analisi dei parametri meteorologici in quota (dataset LAMA)

Il dataset LAMA è un modello meteorologico ad area limitata (LAMA), che fornisce una descrizione coerente e completa dell'atmosfera in un dominio di simulazione che copre l'intera Italia (si veda la Figura seguente).

Tale dataset viene calibrato da ARPA Emilia Romagna e forzato ad avvicinarsi ai dati osservati dalle stazioni meteorologiche della rete meteorologica internazionale (dati GTS) secondo la tecnica dell' "assimilazione".

Questo modello contiene al suo interno le equazioni fluidodinamiche complete ed è capace di descrivere esplicitamente i fenomeni atmosferici includendo brezze e convezione. Contiene, inoltre, informazioni sulla interazione suolo-atmosfera, risultando molto indicato nelle simulazioni su territorio ad orografia complessa.

Tale dataset usa una griglia con un passo di 0.0625° in coordinate sferiche ruotate, corrispondente a una risoluzione orizzontale di circa 7 km. In verticale, vengono studiati 40 livelli: l'ultimo è fissato a 30 hPa, e i primi 1500 m di atmosfera contengono almeno 13 livelli di analisi.

Figura 4.6

GrADS: COLA/IGES

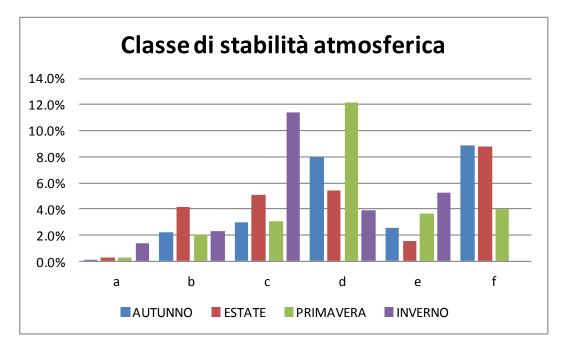
LAMA: griglia di lavoro e orografia (m) -14

Griglia di lavoro e orografia

Per il territorio di analisi e per l'anno 2013 sono disponibili 33 livelli di analisi (compresi tra 0 e 21'744 m di altezza sul livello del mare). In seguito alle operazioni di calibrazione e validazione del modello è stata selezionata la quota a 970 m s.l.m. (si veda il paragrafo successivo per maggiori informazioni), come altezza di riferimento per i dati meteorologici in quota.

La distribuzione delle classi di velocità a 970 m di altezza evidenzia che, rispetto ai valori riscontrati a terra, in quota la velocità dei venti risulta superiore. La velocità massima riscontrata è pari a 36,7 m/s e quella media è di 7.3 m/s. Nello stesso anno la centralina Agip Petroli ha rilevato (all'altezza di 40 m dal suolo) una velocità massima pari 19.1 m/s ed una velocità media di 4,9 m/s.

La rosa dei venti a 970 metri di quota è indicata in Figura 4.7.


2008-05-16-11:58

raffineria di gela

WIND SPEED (m/s) >= 11.0
7.0 - 11.0
4.0 - 7.0
2.5 - 4.0
0.5 - 2.5
Calms: 0.56%

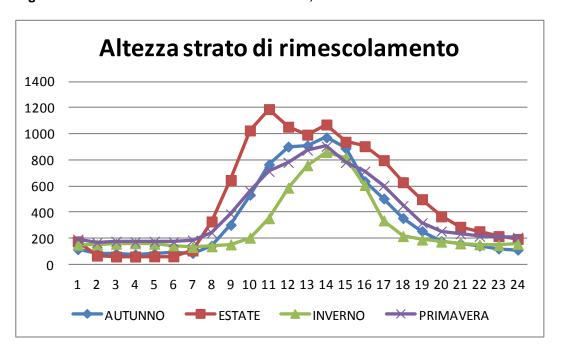
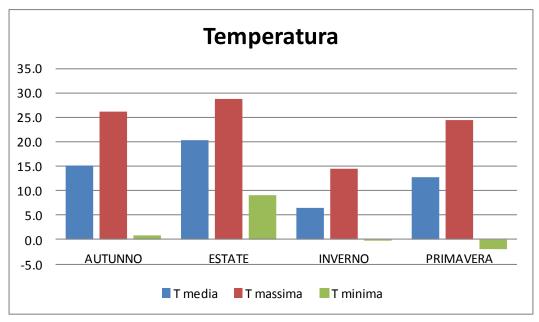

Figura 4.7 Rosa dei venti alla quota di 970 metri, anno 2013

Figura 4.8 Classi di stabilità atmosferica, anno 2013

La classe di stabilità atmosferica prevalente è la classe D (leggermente stabile) in primavera, la classe C (leggermente instabile) in inverno e la classe F (stabile) d'estate ed in autunno.


Figura 4.9 Altezza strato di rimescolamento, anno 2013

Per quanto concerne l'altezza dello strato di rimescolamento (Figura 4.9), si può notare come l'andamento orario di tale parametro sia abbastanza omogeneo nell'intero anno.

Figura 4.10 Andamento annuale dei valori medi, massimi e minimi della temperatura registrata a 970 metri, anno 2013

La temperatura a 970 metri presenta dei massimi nei mesi di luglio e agosto e un minimo al di sotto di 0°C a febbraio e marzo.

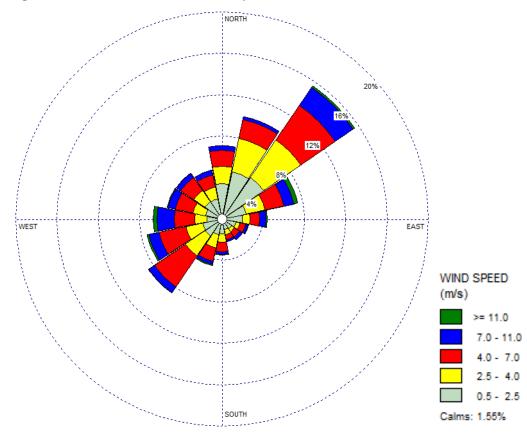


Figura 4.11 Rosa dei venti al suolo presente nel dataset LAMA

La rosa dei venti calcolata al suolo (34 metri) presente nel dataset LAMA (Figura 4.11) risulta in linea con quella ricavata dai dati meteorologici monitorati presso la centralina Agip Petroli (alla quota di 40 m): è confermato che la situazione più frequente è quella con venti provenienti da Nord-Est.

4.3. Dati meteorologici utilizzati in input al modello

Le caratteristiche meteo climatiche e meteo diffusive utilizzate per lo studio modellistico di dispersione degli inquinanti si riferiscono all'anno meteo 2013 e considerano sia le informazioni monitorate a terra che quelle in quota fornite dal dataset LAMA.

Le informazioni rilevate a terra sono quelle che meglio descrivono le caratteristiche micro-meteorologiche del territorio locale e sono state impiegate prioritariamente per la definizione dell'input meteo.

Le informazioni in quota sono però indispensabili per meglio descrivere la dispersione nell'atmosfera delle emissioni della Raffineria in quanto questa ha dei camini di altezza significativa (fino a 150 m); la spinta termica, data dell'elevata temperatura di emissione

ENI R&M – Raffineria di Gela
Pagina 17

Studio modellistico delle ricadute delle emissioni al suolo raffineria di gela Esercizio impianto anno 2013

dei fumi in atmosfera e la spinta dinamica data dalla velocità di uscita dei fumi contribuiscono all'innalzamento del pennacchio. La quota scelta del dataset LAMA corrisponde al livello 970 metri dove l'effetto del suolo comincia ad essere meno significativo e quindi l'utilizzo di un modello con un minor dettaglio spaziale può essere comunque rappresentativo delle reali condizioni.

I dati rilevati nelle stazioni a terra ed utilizzati nelle simulazioni all'interno del file meteorologico sono stati:

- Velocità del vento (40 metri),
- Direzione del vento (40 metri),
- Temperatura (40 metri),
- Precipitazione (40 metri).

I dati presenti nel dataset LAMA ed utilizzati sono stati:

- Velocità del vento (970 metri),
- Direzione del vento (970 metri),
- Temperatura (970 metri).

Dal dataset LAMA, inoltre, sono stati ricavati i dati relativi alla turbolenza atmosferica, ovvero:

- · Classe di stabilità atmosferica,
- Lunghezza di Monin-Obukhov,
- Velocità di frizione superficiale.

4.4. Aanalisi morfologica del territorio

L'impianto di Gela è situato su di un territorio pianeggiante (Figura 4.12), infatti la sua quota sul livello del mare è di circa 20 metri, con la quota più alta a circa 120 metri.

100 - 120

Legenda (m.s.l.m.)

-20
-20
-20-40
-0-60
-60-80
-80-100

Figura 4.12 Localizzazione della raffineria (in rosso) in relazione all'orografia del territorio

Per quanto concerne l'uso del suolo (Figura 4.13), l'impianto è situato in una zona caratterizzata principalmente da aree agricole e conurbazioni urbane/industriali.

Figura 4.13 Localizzazione della raffineria (in rosso) in relazione all'uso del suolo

5. IL MODELLO DI DISPERSIONE DEGLI INQUINANTI

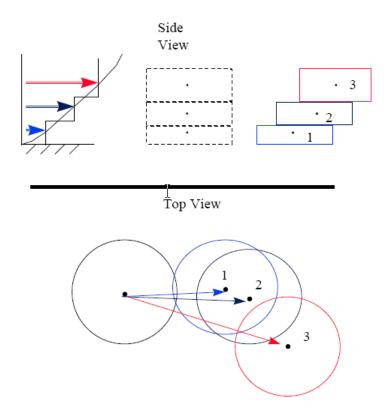
5.1. Inquinanti considerati

La simulazione di dispersione degli inquinanti in atmosfera è stata effettuata mediante il modello di simulazione CALPUFF, per i seguenti inquinanti:

- SO₂ (Biossido di Zolfo);
- NO₂ (Biossido di Azoto);
- PM_{10} (Materiale particolato con dimetro inferiore a 10 μ m);
- CO (Monossido di Carbonio);
- C₆H₆ (Benzene);
- H₂S (Acido Solfidrico);
- NH₃ (Ammoniaca).

Ed i seguenti microinquinanti:

- Pb (Piombo);
- Ni (Nichel);
- IPA (Idrocarburi Policiclici Aromatici) Benzo(a)pirene.


5.2. Descrizione del modello CALPUFF

CALPUFF è un modello lagrangiano, non stazionario a puff gaussiano, multistrato e multi-inquinante. È consigliato dall'U.S. EPA (Environmental Protection Agency) per la stima dell'impatto di sorgenti emissive sia nel caso del trasporto a medio e a lungo raggio, sia per applicazioni di ricadute nelle immediate vicinanze delle sorgenti con condizioni meteorologiche complesse.

Figura 5.1 Schema di funzionamento del modello CALPUFF

CALPUFF PUFF-SPLITTING

Le caratteristiche di maggior interesse del modello sono:

- la trattazione modellistica delle condizioni di calma di vento;
- la capacità di simulare condizioni di flussi non omogenei (orografia complessa, inversione termica, fumigazione, brezza,...);
- la possibilità di utilizzare un campo tridimensionale di vento e temperatura ed un campo bidimensionale di parametri di turbolenza (altezza dello strato di rimescolamento, caratteristiche di stabilità atmosferica ...);
- l'utilizzo di coefficienti di dispersione dalle curve di Pasquill e McElroy o calcolati applicando la teoria della similarità;
- il calcolo dell'effetto scia (down wash) generato dagli edifici prossimi alle sorgenti.

Studio modellistico delle ricadute delle emissioni al suolo raffineria di gela Esercizio impianto anno 2013

La trattazione matematica del modello è piuttosto complessa e si rinvia al manuale tecnico di CALPUFF per ulteriori approfondimenti.

Le tipologie di emissioni previste dal modello CALPUFF sono le seguenti:

- **Emissioni puntuali**: l'emissione avviene da un unico punto georeferenziato avente caratteristiche fisiche e geometriche definite, utilizzate in questo studio.
- **Emissioni areali**: l'emissione avviene da un'area del dominio di interesse, non utilizzate in questo studio.
- **Emissioni volumetriche**: l'emissione avviene all'interno di un volume avente caratteristiche e parametri di dispersione specifici, non utilizzate in questo studio.

In ciascun caso è possibile assegnare anche un profilo temporale emissivo orario.

5.3. Griglia dei recettori

I valori delle concentrazioni degli inquinanti al suolo sono stati stimati in corrispondenza di una serie di punti recettori (2500) appartenenti ad una griglia di calcolo regolare caratterizzata da una maglia con passo di 200 m (Figura 5.2). A ciascun punto della griglia di calcolo è stata assegnata la quota sul livello del mare derivata dal DTM (Modello Digitale del Terreno) SRMT NASA-USGS che dispone di una risoluzione spaziale di 90 m. Tutti i recettori sono stati posizionati ad una quota di 2 metri rispetto al piano campagna.

Figura 5.2 Localizzazione del dominio di calcolo (in arancione), dei recettori considerati nelle simulazioni (in viola) e del perimetro della Raffineria (in rosso)

5.4. Emissioni

Nel 2013 la raffineria ha utilizzato 27 camini di cui si riportano di seguito le caratteristiche geometriche.

Tabella 5-1 Caratteristiche geometriche dei camini presenti nella raffineria ENI di Gela

Camino	Impianto afferente	Altezza (m)	Diametro (m)	Coordinate UTM33		
				X (km)	Y (km)	
E1	Topping 1	68.5	2.00	435.660	4'101.763	
E2	Topping 2	60.0	1.91	435.680	4'101.750	
E3	SNOx	150	8.00	435.404	4'101.832	
E5	Vacuum	65.4	1.65	435.597	4'101.620	
E6	Vacuum	65.4	1.65	435.600	4'101.617	
E7	Coking 1	68.5	2.20	435.566	4'101.626	
E10	Unifining Motor Fuel	35	0.82	435.558	4'101.482	
E12	Desolforazione Flussanti	13.9	1.52	435.359	4'101.356	
E13	Desolforazione Gasoli	29	1.76	435.480	4'101.299	
E14	Plattfining	33	1.88	435.527	4'101.263	
E16	Claus	78.6	1.99	435.480	4'101.602	
E17	Texaco A	42.5	0.39	435.218	4'101.413	
E18	Texaco B	42.5	0.39	435.195	4'101.382	
E19	Acido Solforico-Abbattimento SO ₂	42	1.20	435.042	4'101.587	
E20	Acido Solforico	14	0.45	435.086	4'101.655	
E21-1	CTE	150	3.6	435.371	4'101.732	
E21-2	CTE	150	3.6	435.371	4'101.732	
E21-3	CTE	150	3.6	435.371	4'101.732	
E21-4	CTE	150	4.2	435.371	4'101.732	
E22	Coking 2	64	1.81	435.548	4'101.580	
E24	Imbottigl. GPL	6	0.5	436.216	4'101.631	
E25	Imbottigl. GPL	6	0.5	436.216	4'101.631	
E26	Imbottigl. GPL	6	0.5	436.216	4'101.631	
E27	DEINT	8	0.3	436.359	4'101.612	
E28	TAF	9	0.650	434.860	4'101.374	
E29	TAF	10	0.720	434.930	4'101.453	
E30	Copertura TAS	4	0.16	435.172	4'100.860	

Studio modellistico delle ricadute delle emissioni al suolo ia di gela Esercizio impianto anno 2013

raffineria di gela

Per quanto concerne le caratteristiche emissive sono riassunti di seguito i valori per l'anno 2013 a diverse scale temporali, a seconda dei punti emissivi (Tabella 5-2).

Tabella 5-2 Dettaglio temporale disponibile dei dati emissivi

Camino	Inquinanti / Parametri	Dettaglio temporale
	SO ₂ , NO ₂ , PM ₁₀ , CO, Temperatura e Portata dei fumi	giornaliero (SME)
E3, E21	H ₂ S, NH ₃	mensile
	C ₆ H ₆ , Pb, Ni, IPA	quadrimestrale
E1, E2, E4, E5, E6, E7, E8, E9, E10, E11, E12, E13,	SO ₂ , NO ₂ , PM ₁₀ , CO, H ₂ S, NH ₃ , Temperatura e Portata dei fumi	mensile
E14, E15, E16, E17, E18, E19, E20, E22, E23	C ₆ H ₆ , Pb, Ni, IPA	semestrale
E24, E25, E26, E27, E28, E29, E30	SO ₂ , NO ₂ , PM ₁₀ , CO, H ₂ S, NH ₃ ,C ₆ H ₆ , Pb, Ni, IPA, Temperatura e Portata dei fumi	quadrimestrale

L'input emissivo orario per il modello CALPUFF è stato calcolato utilizzando sempre il dato con il maggior dettaglio temporale disponibile e dove necessario sono state adottate ipotesi cautelative per completare i dati mancanti.

Ad esempio, per i camini fuori bolla (E24, E25, E26, E27, E28, E29, E30/E31), il cui contributo emissivo è comunque ridotto, è stato considerato un funzionamento costante (8760 ore all'anno) non disponendo dei giorni di funzionamento effettivi.

Per i camini che dispongono di Sistema Monitoraggio Emissioni (SME), E3 ed E21, sono stati utilizzati i dati giornalieri di portata e temperatura dei fumi e le concentrazioni giornaliere di SO_2 , NOx, PTS (polveri totali sospese) e CO; le concentrazioni di H_2S e NH_3 sono state ricavate dalle campagne mensili mentre quelle relative a C_6H_6 , Pb, Ni, IPA dalle campagne quadrimestrali.

Le emissioni relative agli altri camini in bolla (E1, E2, E4-E20, E22 e E23) sono state modellizzate utilizzando il dato mensile laddove disponibile o in alternativa quello semestrale.

Le caratteristiche emissive medie annuali relative ai camini che hanno esercito nel 2013 sono riassunte nella Tabella 5-3 seguente.

Tabella 5-3 Caratteristiche medie emissive dell'anno 2013

Comino	Portata	Temp.	SO ₂	NO _x	PTS	СО	C ₆ H ₆	H₂S	NH ₃	Pb	Ni	IPA
Camino	(Nm³/h)	(°C)	t/a	t/a	t/a	t/a	t/a	t/a	t/a	t/a	t/a	t/a
E1	16'691	243.9	79.15	26.33	1.46	1.89	1.19E-02	4.25E-02	8.83E-01	-	1.12E-02	1.30E-05
E2	10'601	172.5	18.26	23.78	0.2	0.32	4.78E-03	3.31E-03	2.95E-01	4.78E-05	2.10E-03	4.78E-05
E3	400'626	109.6	1599.99	217.56	15.68	204.15	1.75E-01	5.98E-01	1.22E+01	1.26E-02	8.74E-02	1.75E-03
E5	6'762	318.1	33.91	9.85	0.58	0.36	5.91E-03	6.29E-02	3.74E-02	ı	1.19E-02	4.04E-06
E6	6'762	318.1	33.91	9.85	0.58	0.36	5.91E-03	6.29E-02	3.74E-02	ı	1.19E-02	4.04E-06
E7	20'700	254.9	58.19	33.43	0.44	25.53	1.83E-02	1.17E-01	9.05E-01	ı	4.35E-04	9.48E-05
E10	2'701	112	12.2	5.42	0.06	4.03	3.60E-03	1.09E-02	6.47E-02	1.19E-05	2.02E-04	1.29E-05
E12	4'175	387	6.71	6.6	0.05	0.38	2.26E-03	3.28E-03	3.21E-02	2.26E-05	1.13E-04	2.26E-05
E13	4'463	334.2	5.56	6.07	0.1	19.64	1.01E-02	1.43E-02	1.41E-01	ı	3.90E-04	6.86E-06
E14	993	355.2	6.92	2.03	0.01	0.28	-	3.41E-03	8.57E-03	ı	ı	1
E16	27'399	471.6	1190.34	71.73	2.69	215.46	2.74E-02	7.77E-01	1.29E+00	1.47E-04	2.10E-02	1.64E-04
E17	6'898	63.1	8.76	0.25	0.02	87.36	4.11E-03	1.94E-02	1.05E+00	2.75E-05	5.46E-03	2.80E-05
E18	2'510	77.8	0.34	0.02	0.09	8.56	-	8.10E-02	5.20E-02	ı	ı	1
E19	13'427	33.8	25.18	21.21	0.38	0.42	1.15E-02	4.56E-02	5.26E-01	4.15E-05	1.55E-02	5.33E-05
E20	1'004	34.8	0.16	0.03	0.08	0.01	5.99E-04	2.52E-03	9.11E-03	1	1.56E-05	7.66E-07
E21-1	16'249	98.3	150.48	49.52	0.58	5.84	6.95E-03	1.38E-02	1.12E+00	1	2.78E-03	6.95E-05
E21-2	4'782	54.9	58.33	13.63	0.34	0.72	1.78E-03	3.25E-03	3.25E-01	7.10E-04	3.55E-04	1.78E-05
E21-3	264	3.1	2.39	0.18	0.01	0	-	-	-	1	1	-
E21-4	77'007	65.8	59.64	225.19	3.64	12.27	2.35E-02	1.23E-01	7.52E-02	-	5.18E-03	2.35E-04
E22	9'829	194.4	10.51	21.97	0.43	0.33	8.08E-02	5.57E-03	8.71E-02	4.49E-05	3.59E-03	4.49E-05
E24	2'588	29.23	0.02	0.01	0.01	0.01	1.13E-03	-	-	2.56E-05	2.98E-05	3.25E-06
E25	3'961	35.12	0.03	0.02	0.002	0.02	1.73E-03	-	-	3.72E-05	3.72E-05	5.50E-06
E26	5'175	50.69	0.05	0.02	0.01	0.02	4.08E-03	-	-	5.45E-05	5.52E-05	8.32E-06
E27	62	13.65	-	-	-	-	1.56E-03	4.52E-04	2.70E-05	-	-	-
E28	26'581	27.22	0.2	0.12	0.03	0.12	4.88E-02	3.17E-03	3.17E-03	1.32E-04	2.90E-04	3.50E-05
E29	1'634	616.06	0.09	1.31	0.002	0.27	2.81E-03	9.93E-05	9.93E-05	2.43E-05	1.91E-04	2.64E-06
E30	117	22.7	0.001	0.001	0.00002	0.001	5.11E-05	1.68E-05	4.70E-04	5.28E-07	1.37E-06	1.84E-07

6. RISULTATI DELLE SIMULAZIONI

I risultati delle simulazioni effettuate con il modello CALPUFF sono rappresentati mediante mappe di isoconcentrazione che illustrano i risultati delle mediazioni sui differenti periodi temporali previsti dal DLgs 155/2010 per i diversi inquinanti, al fine di verificare l'impatto degli stessi rispetto ai limiti di qualità dell'aria vigenti (si veda Sezione 2).

In Tabella 6-1 sono elencati i periodi di mediazione resi in formato grafico come mappe di isoconcentrazione e le corrispondenti tavole, che sono disponibili in allegato al presente rapporto.

Tabella 6-1 Elenco delle tavole

N°tavola	Inquinante	Periodo di mediazione	N°tavola	Inquinante	Periodo di mediazione
1		anno	9	NO _x	anno
2	SO_2	giorno	10	C ₆ H ₆	anno
3		ora	11	H ₂ S	giorno
4	DM	anno	12	NH ₃	giorno
5	PM ₁₀	giorno	13	IPA	anno
6	NO	anno	14	Pb	anno
7 NO ₂		ora	15	Ni	anno
8	СО	8 ore			

Come anticipato in Sezione 2, per gli inquinanti SO₂, NO₂, PM₁₀ e CO la normativa di riferimento fissa il numero di volte che la concentrazione limite può essere superata in un anno; i risultati prodotti sono quindi elaborati in modo da rappresentare il corrispondente percentile della concentrazione massima (nell'intervallo temporale fissato). I valori annuali sono invece mediati sull'anno completo.

I valori di riferimento utilizzati per le concentrazioni al suolo di H_2S e NH_3 , non considerati dal DLgs 155/2010, sono tratti dalla letteratura internazionale (si veda la Tabella 2-2).

Inoltre, le seguenti assunzioni sono state adottate in via cautelativa nell'elaborazione dei dati:

- Si è considerata la concentrazione di NO₂ pari a quella degli NOx, considerando che tutti gli NOx presenti reagiscano in atmosfera e si presentino in forma di NO₂;
- Si è considerata la concentrazione PM₁₀ pari a quella delle PTS, considerando che tutte le polveri emesse dall'impianto (PTS) siano particelle con dimensioni inferiori a 10 μm (PM₁₀);

ENI R&M – Raffineria di Gela Pagina 28

Studio modellistico delle ricadute delle emissioni al suolo raffineria di gela Esercizio impianto anno 2013

 Si è considerata la concentrazione IPA pari a quella del Benzo(a)pirene, al fine di confrontarne la concentrazione totale degli IPA rispetto a quella relativa al solo Benzo(a)pirene che risulta normata.

Nelle tavole allegate si evidenzia graficamente come le ricadute degli inquinanti al suolo si configurino in linea con quanto previsto dall'analisi delle rose dei venti, ovvero nel quadrante a Sud-Ovest del dominio di simulazione (in mare) e nell'area agricola a nord della Raffineria (in particolare nelle medie annuali ma anche per gli altri periodi di mediazione).

Per tutti gli inquinanti considerati, nella Tabella 6-2 seguente, sono riportati i valori massimi di ricaduta che sono risultati inferiori, nell'intero dominio di simulazione, con i limiti fissati in normativa per i diversi periodi di mediazione.

Dall'esame dei dati si evince che, anche nell'adozione delle ipotesi cautelative sopra riportate, le emissioni della raffineria nell'anno 2013 non hanno determinato alcun superamento al suolo dei limiti di legge e/o dei valori di riferimento.

Tabella 6-2 Valori massimi di ricaduta risultati nell'intero dominio di simulazione

Inquinante		SO ₂		PN	/ 1 ₁₀	N	02	СО	NO _x	C ₆ H ₆	H₂S	NH ₃	Pb	Ni	B(a)P
Periodo di mediazione	media annuale	percentile giornaliero	percentile orario	media annuale	percentile giornaliero	media annuale	percentile orario	media giornaliero calcolata su 8 ore	media annuale	media annuale	media giornaliera	media giomaliera	media annuale	media annuale	media annuale
U.d.M	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	mg/m³	μg/m³	μg/m³	μg/m³	μg/m³	μg/m³	ng/m³	ng/m³
Limite di legge	20	125	350	40	50	40	200	10	30	5	150	100	0.5	20	1
Valore massimo di ricaduta	6.5	48.1	270.5	0.10	0.24	1.6	44.2	0.13	1.6	0.03	0.10	0.56	2.08E-04	1.2	0.03

6.1. Validazione delle simulazioni modellistiche

All'interno delle simulazioni modellistiche sono stati considerati come recettori anche i punti corrispondenti all'ubicazione delle centraline di qualità dell'aria (Figura 6.1); in questo modo è stato possibile effettuare la validazione dei *run* modellistici eseguiti con il modello CALPUFF.

Per effettuare tale validazione è stato considerato il biossido di zolfo (SO₂) come tracciante delle attività di raffineria. Sostanzialmente si è ipotizzato, cautelativamente, che nell'area di studio tale inquinante fosse emesso esclusivamente dalla raffineria.

Figura 6.1 Localizzazione delle centraline di monitoraggio di qualità dell'aria su cui è stata effettuata la validazione del modello CALPUFF

Studio modellistico delle ricadute delle emissioni al suolo @ela Esercizio impianto anno 2013

raffineria di gela

Le concentrazioni ottenute dal modello presso le centraline sono riportate nelle seguente Tabella 6-3 assieme ai valori realmente registrati nel medesimo periodo (2013).

Tabella 6-3 Ricadute attese di SO_2 (in $\mu g/m^3$) presso le centraline di monitoraggio della qualità dell'aria e confronto con i dati stimati dal modello CALPUFF

	Coordinate UTM (km)		Media an (<i>µ</i> g/	nnua SO₂ /m³)	Percentile giornaliero SO ₂ (µg/m³)		
			CALPUFF	Centralina	CALPUFF	Centralina	
C. Soprano	431.03	4103.60	0.3	0.5	5.3	2.0	
P. Rimembranze	431.02	4102.14	0.8	1.2	8.9	5.6	
AgipSpA	436.66	4102.66	3.1	2.6	29.1	34.2	
Catarrosone	439.47	4099.61	1.8	2.1	12.0	12.0	
C. Giardina	434.43	4105.96	0.8	1.0	10.0	2.8	

Rispetto alle centraline di qualità dell'aria analizzate nel paragrafo 3 sono state escluse:

- Ponte Olivo e Farello: tali stazioni presentano una completezza dei dati rilevati inferiore al 75%, pertanto, tali centraline non sono quindi statisticamente rappresentative.
- Niscemi Sud: tale stazione è al di fuori del Comune di Gela, quindi esterna al dominio di simulazione.

Dalla Tabella 6-3 si evince come le concentrazioni di SO_2 stimate dal modello siano in linea con i valori registrati dalle centraline di qualità dell'aria. Lo scostamento percentuale più significativo, comunque relativo a valori di concentrazione molto contenuti in termini assoluti, si manifesta in modo più significativo per il percentile giornaliero delle due stazioni – C. Soprano e di C. Giardina – presso le quali si rilevano i valori di concentrazione più bassi misurati nell'area di studio (inferiori ai 3 μ g/m³). La correlazione tra i dati misurati nelle centraline di qualità dell'aria e quelli stimati dal modello è buona (R2 sempre maggiore di 0.9), come evidenziato nelle figure seguenti (Figura 6.2 e Figura 6.3).

Si conferma quindi che i valori di concentrazione al suolo per l'anno 2013 non presentano alcuna criticità, mantenendosi ben al di sotto dei limiti imposti dalla normativa vigente.

Figura 6.2 Analisi di correlazione (scatter-plot) tra i valori annuali di concentrazione di SO₂ registrati nelle centraline ed i valori simulati dal modello Calpuff

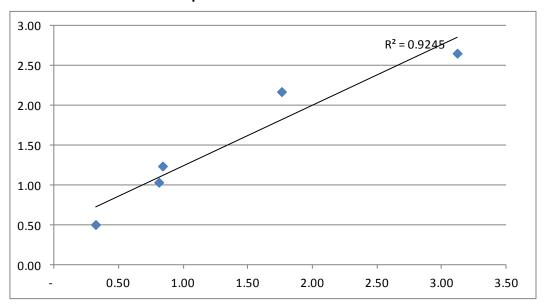
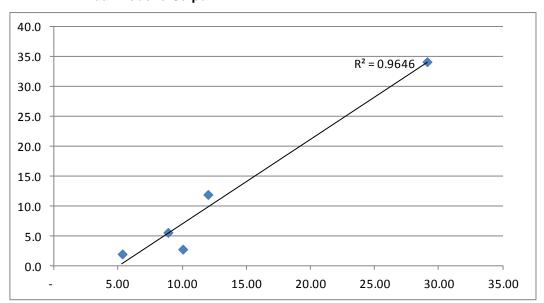



Figura 6.3: Analisi di correlazione (scatter-plot) tra i valori giornalieri di concentrazione di SO₂ registrati nelle centraline ed i valori simulati dal modello Calpuff

Studio modellistico delle ricadute delle emissioni al suolo raffineria di gela Esercizio impianto anno 2013

7. CONCLUSIONI

In questo studio a partire dalle emissioni della raffineria di Gela relative al 2013, dalle condizioni meteorologiche monitorate al suolo e dai dati in quota ricavati dal dataset LAMA nel medesimo anno, si è simulata, tramite il modello di dispersione CALPUFF, la concentrazione degli inquinanti presso i recettori posizionati nell'intorno dell'impianto (dominio quadrato avente lato di 10 km) al fine di valutarne l'impatto sulla matrice aria.

Le concentrazioni degli inquinanti stimate al suolo evidenziano il rispetto della legislazione vigente, con valori ben al di sotto degli standard per la qualità dell'aria.

A conferma della bontà dei risultati ottenuti tramite le simulazioni modellistiche, è stata eseguita anche la validazione degli stessi tramite correlazione dei risultati modellistici per il biossido di zolfo (considerato cautelativamente in qualità di "tracciante" delle emissioni della raffineria) rispetto ai dati misurati per lo stesso parametro nell'anno 2013 dalle centraline di rilevamento della rete di monitoraggio della qualità dell'aria della Raffineria di Gela.

Si conferma quindi che i valori di concentrazione al suolo per l'anno 2013 non presentano alcuna criticità, mantenendosi ampiamente al di sotto dei limiti imposti dalla normativa vigente

Studio modellistico delle ricadute delle emissioni al suolo raffineria di gela Esercizio impianto anno 2013

8. BIBLIOGRAFIA

- [1] Atmospheric chemistry and physics of air pollution, Seinfeld John H., Wiley (New York), 1986.
- [2] Air pollution modeling, Zanetti, Computational mechanics publications. Van Nostrand Reinhold, New York, USA, 1990.
- [3] Applied model for the growth of the daytime mixed layer, Batchvarova and Gryning, Bound. Layer Meteor, 1991.
- [4] Velocity profiles and resistance laws for the planetary boundary layer in neutral and stable stratification, Zilitinkevich, Izvestija AN SSSR, FAO, 25, No. 11, 1131-1143, 1989.
- [5] Analysis of various schemes for the estimation of atmospheric stability classification, Mohan Siddiqui, Atmos. Environ.32 3775-3781, 1998.
- [6] *D.Lgs. 155/2010* Attuazione della direttiva 2008/50/CE relativa alla qualità dell'aria ambiente e per un'aria più pulita in Europa.
- [7] US-EPA http://www.epa.gov/ttn/scram/aqmindex.htm modelli per la qualità dell'aria.
- [8] Calpuff UserGuide S. Shire, R.Robe, E. Fernau, J.Yamartino 2000

Tavole

Confine della raffineria

Dominio di simulazione

Ricadute (µg/m³)

< 1.2

1.2 - 2.2

2.2 - 3.2

3.2 - 4.2

4.2 - 5.2

5.2 - 6.53

ENI – Raffineria di Gela

Stima degli impatti delle emissioni in atmosfera

Inquinante: SO₂

Valore limite: **20 μg/m**³

Periodo di mediazione: anno

Tavola_01

_Aprile 2014

Confine della raffineria

Dominio di simulazione

Ricadute (µg/m³)

< 9

9 - 17

17 - 25

25 - 33

33 - 41

41 - 48.1

ENI – Raffineria di Gela

Stima degli impatti delle emissioni in atmosfera

Inquinante: SO₂

Valore limite: 125 μg/m³

Periodo di mediazione: giorno

Tavola_02

_Aprile 2014

Confine della raffineria

Dominio di simulazione

Ricadute (µg/m³)

< 50

50 - 95

95 - 140

140 - 185

185 - 230

230 - 270.52

ENI – Raffineria di Gela

Stima degli impatti delle emissioni in atmosfera

Inquinante: SO₂

Valore limite: **350 μg/m**³

Periodo di mediazione: ora

Tavola_03

_Aprile 2014

TerrAria s.r.l.

Confine della raffineria

Dominio di simulazione

Ricadute (µg/m³)

< 0.016

0.016 - 0.032

0.032 - 0.048

0.048 - 0.064

0.064 - 0.080

0.080 - 0.1

ENI – Raffineria di Gela

Stima degli impatti delle emissioni in atmosfera

Inquinante: PM₁₀

Valore limite: **40 μg/m** ³

Periodo di mediazione: anno

Tavola_04

_Aprile 2014

Confine della raffineria

Dominio di simulazione

Ricadute (µg/m³)

< 0.04

0.04 - 0.08

0.08 - 0.12 0.12 - 0.16

0.16 - 0.20

0.20 - 0.24

ENI – Raffineria di Gela

Stima degli impatti delle emissioni in atmosfera

Inquinante: PM₁₀

Valore limite: **50 µg/m** ³

Periodo di mediazione: giorno

Tavola_05

_Aprile 2014

Confine della raffineria

Dominio di simulazione

Ricadute (µg/m³)

< 0.30

0.30 - 0.56

0.56 - 0.82

0.82 - 1.1

1.1 - 1.3

1.3 - 1.6

ENI – Raffineria di Gela

Stima degli impatti delle emissioni in atmosfera

Inquinante: NO2

Valore limite: 40 µg/m³

Periodo di mediazione: anno

Tavola_06

_Aprile 2014

Confine della raffineria

Dominio di simulazione

Ricadute (µg/m³)

< 9.5

9.5 - 16.5

16.5 - 23.5

23.5 - 30.5

30.5 - 37.5

37.5 - 44.21

ENI – Raffineria di Gela

Stima degli impatti delle emissioni in atmosfera

Inquinante: NO2

Valore limite: 200 μg/m³

Periodo di mediazione: ora

Tavola_07

_Aprile 2014

Confine della raffineria

Dominio di simulazione

Ricadute (µg/m³)

< 23

23 - 44

44 - 65

65 - 86

86 - 107 107 - 130

ENI – Raffineria di Gela

Stima degli impatti delle emissioni in atmosfera

Inquinante: CO

Valore limite: 10000 µg/m

Periodo di mediazione: 8 ore

Tavola_08

_Aprile 2014

Confine della raffineria

Dominio di simulazione

Ricadute (µg/m³)

< 0.30

0.30 - 0.56

0.56 - 0.82

0.82 - 1.1

1.1 - 1.3 1.3 - 1.6

ENI – Raffineria di Gela

Stima degli impatti delle emissioni in atmosfera

Inquinante: NO_x

Valore limite: 30 µg/m

Periodo di mediazione: anno

Tavola_09

_Aprile 2014

Confine della raffineria

Dominio di simulazione

Ricadute (µg/m³)

< 0.005

0.005 - 0.01

0.01 - 0.015

0.015 - 0.02

0.02 - 0.025

0.025 - 0.03

ENI – Raffineria di Gela

Stima degli impatti delle emissioni in atmosfera

Inquinante: C₆H₆

Valore limite: 5 µg/m³

Periodo di mediazione: anno

Tavola_10

_Aprile 2014

TerrAria s.r.t.

Confine della raffineria

Dominio di simulazione

Ricadute (µg/m³)

< 0.018

0.018 - 0.033

0.033 - 0.048

0.048 - 0.063

0.063 - 0.078

0.078 - 0.1

ENI – Raffineria di Gela

Stima degli impatti delle emissioni in atmosfera

Inquinante: H₂S

Valore limite: 150 µg/m

Periodo di mediazione: giorno

Tavola_11

_Aprile 2014

Confine della raffineria

Dominio di simulazione

Ricadute (µg/m³)

< 0.1

0.1 - 0.2

0.2 - 0.3

0.3 - 0.4

0.4 - 0.5

0.5 - 0.56

ENI – Raffineria di Gela

Stima degli impatti delle emissioni in atmosfera

Inquinante: NH3

Valore limite: **100 μg/m**³

Periodo di mediazione: giorno

Tavola_12

_Aprile 2014

Confine della raffineria

Dominio di simulazione

Ricadute (ng/m³)

< 0.005

0.005 - 0.01

0.01 - 0.015

0.015 - 0.02 0.02 - 0.025

0.025 - 0.03

ENI – Raffineria di Gela

Stima degli impatti delle emissioni in atmosfera

Inquinante: C₂₀H₁₂

Valore limite: 1 ng/m³

Periodo di mediazione: anno

Tavola_13

_Aprile 2014

Confine della raffineria

Dominio di simulazione

Ricadute (µg/m³)

< 0.000033

0.000033 - 0.000066

0.000066 - 0.000099

0.000099 - 0.00013

0.00013 - 0.00016

0.00016 - 0.000208

ENI – Raffineria di Gela Stima degli impatti delle emissioni in atmosfera

Valore limite: **0.5** µg/m³ Inquinante: Pb

Periodo di mediazione: anno

Tavola_14

_Aprile 2014

N N N

Confine della raffineria

Dominio di simulazione

Ricadute (ng/m³)

< 0.2

0.2 - 0.4

0.4 - 0.6

0.6 - 0.8

0.8 - 1.0

1.0 - 1.2

ENI – Raffineria di Gela

Stima degli impatti delle emissioni in atmosfera

Inquinante: Ni

Valore limite: 20 ng/m³

Periodo di mediazione: anno

Tavola_15

_Aprile 2014

